EXPERT INSIGHT

Sebastian Raschka
& Vahid Mirjalili

Python

VETILGE
Learning

Machine Learning and Deep Learning
with Python, scikit-learn, and TensorFlow

L] Pack®

Python Machine Learning
Second Edition

Machine Learning and Deep Learning with Python,
scikit-learn, and TensorFlow

Sebastian Raschka
Vahid Mirjalili

Packt

BIRMINGHAM - MUMBAI

Python Machine Learning
Second Edition

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Second edition: September 2017
Production reference: 3231017

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78712-593-3

www . packtpub.com

Credits

Authors
Sebastian Raschka

Vahid Mirjalili

Reviewers
Jared Huffman

Huai-En, Sun (Ryan Sun)

Acquisition Editor
Frank Pohimann

Content Development Editor
Chris Nelson

Project Editor
Monika Sangwan

Technical Editors
Bhagyashree Rai

Nidhisha Shetty

Copy Editor
Safis Editing

Project Coordinator
Suzanne Coutinho

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Graphics
Kirk D'Penha

Production Coordinator
Arvindkumar Gupta

About the Authors

Sebastian Raschka, the author of the bestselling book, Python Machine Learning,
has many years of experience with coding in Python, and he has given several
seminars on the practical applications of data science, machine learning, and deep
learning including a machine learning tutorial at SciPy—the leading conference for
scientific computing in Python.

While Sebastian's academic research projects are mainly centered around
problem-solving in computational biology, he loves to write and talk about

data science, machine learning, and Python in general, and he is motivated to

help people develop data-driven solutions without necessarily requiring a machine
learning background.

His work and contributions have recently been recognized by the departmental
outstanding graduate student award 2016-2017 as well as the ACM Computing
Reviews' Best of 2016 award. In his free time, Sebastian loves to contribute to open
source projects, and the methods that he has implemented are now successfully used
in machine learning competitions, such as Kaggle.

I would like to take this opportunity to thank the great Python
community and developers of open source packages who helped
me create the perfect environment for scientific research and data
science. Also, | want to thank my parents who always encouraged
and supported me in pursuing the path and career that | was so
passionate about.

Special thanks to the core developers of scikit-learn. As a contributor
to this project, | had the pleasure to work with great people who are
not only very knowledgeable when it comes to machine learning but
are also excellent programmers. Lastly, I'd like to thank Elie Kawerk,
who volunteered to review the book and provided valuable feedback
on the new chapters.

Vahid Mirjalili obtained his PhD in mechanical engineering working on novel
methods for large-scale, computational simulations of molecular structures.
Currently, he is focusing his research efforts on applications of machine learning
in various computer vision projects at the department of computer science and
engineering at Michigan State University.

Vahid picked Python as his number-one choice of programming language, and
throughout his academic and research career he has gained tremendous experience
with coding in Python. He taught Python programming to the engineering class at
Michigan State University, which gave him a chance to help students understand
different data structures and develop efficient code in Python.

While Vahid's broad research interests focus on deep learning and computer vision
applications, he is especially interested in leveraging deep learning techniques to
extend privacy in biometric data such as face images so that information is not
revealed beyond what users intend to reveal. Furthermore, he also collaborates with
a team of engineers working on self-driving cars, where he designs neural network
models for the fusion of multispectral images for pedestrian detection.

I would like to thank my PhD advisor, Dr. Arun Ross, for giving me
the opportunity to work on novel problems in his research lab. I also
like to thank Dr. Vishnu Boddeti for inspiring my interests in deep
learning and demystifying its core concepts.

About the Reviewers

Jared Huffman is an entrepreneur, gamer, storyteller, machine learning fanatic,
and database aficionado. He has dedicated the past 10 years to developing software
and analyzing data. His previous work has spanned a variety of topics, including
network security, financial systems, and business intelligence, as well as web
services, developer tools, and business strategy. Most recently, he was the founder
of the data science team at Minecraft, with a focus on big data and machine learning.
When not working, you can typically find him gaming or enjoying the beautiful
Pacific Northwest with friends and family.

I'd like to thank Packt for giving me the opportunity to work on
such a great book, my wife for the constant encouragement, and my
daughter for sleeping through most of the late nights while | was
reviewing and debugging code.

Huai-En, Sun (Ryan Sun) holds a master's degree in statistics from the National
Chiao Tung University. He is currently working as a data scientist for analyzing the
production line at PEGATRON. Machine learning and deep learning are his main
areas of research.

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercaree@packtpub.com for more details.

At www . PacktPub . com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

» Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan
your personal development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content
* Ondemand and accessible via a web browser

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on this
book's Amazon page at https://www.amazon.com/dp/17871259309.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free
eBooks and videos in exchange for their valuable feedback. Help us be relentless in
improving our products!

Table of Contents

Preface Xi
Chapter 1: Giving Computers the Ability to Learn from Data 1
Building intelligent machines to transform data into knowledge 2
The three different types of machine learning 2
Making predictions about the future with supervised learning 3
Classification for predicting class labels 3
Regression for predicting continuous outcomes 5
Solving interactive problems with reinforcement learning 6
Discovering hidden structures with unsupervised learning 7
Finding subgroups with clustering 7
Dimensionality reduction for data compression 8
Introduction to the basic terminology and notations 8
A roadmap for building machine learning systems 11
Preprocessing — getting data into shape 12
Training and selecting a predictive model 12
Evaluating models and predicting unseen data instances 13
Using Python for machine learning 13
Installing Python and packages from the Python Package Index 14
Using the Anaconda Python distribution and package manager 14
Packages for scientific computing, data science, and machine learning 15
Summary 15
Chapter 2: Training Simple Machine Learning Algorithms
for Classification 17
Artificial neurons — a brief glimpse into the early history of
machine learning 18
The formal definition of an artificial neuron 19
The perceptron learning rule 21

Table of Contents

Implementing a perceptron learning algorithm in Python 24
An object-oriented perceptron API 24
Training a perceptron model on the Iris dataset 28

Adaptive linear neurons and the convergence of learning 34
Minimizing cost functions with gradient descent 35
Implementing Adaline in Python 38
Improving gradient descent through feature scaling 42
Large-scale machine learning and stochastic gradient descent 44

Summary 50

Chapter 3: A Tour of Machine Learning Classifiers
Using scikit-learn 51

Choosing a classification algorithm 52

First steps with scikit-learn — training a perceptron 52

Modeling class probabilities via logistic regression 59
Logistic regression intuition and conditional probabilities 59
Learning the weights of the logistic cost function 63
Converting an Adaline implementation into an algorithm for
logistic regression 66
Training a logistic regression model with scikit-learn 71
Tackling overfitting via regularization 73

Maximum margin classification with support vector machines 76
Maximum margin intuition 77
Dealing with a nonlinearly separable case using slack variables 79
Alternative implementations in scikit-learn 81

Solving nonlinear problems using a kernel SVM 82
Kernel methods for linearly inseparable data 82
Using the kernel trick to find separating hyperplanes in
high-dimensional space 84

Decision tree learning 88
Maximizing information gain — getting the most bang for your buck 90
Building a decision tree 95
Combining multiple decision trees via random forests 98

K-nearest neighbors — a lazy learning algorithm 101

Summary 105

Chapter 4: Building Good Training Sets — Data Preprocessing 107

Dealing with missing data 107
Identifying missing values in tabular data 108
Eliminating samples or features with missing values 109
Imputing missing values 110

Understanding the scikit-learn estimator API 111

Lii]

Table of Contents

Handling categorical data 112
Nominal and ordinal features 113
Creating an example dataset 113
Mapping ordinal features 113
Encoding class labels 114
Performing one-hot encoding on nominal features 116
Partitioning a dataset into separate training and test sets 118
Bringing features onto the same scale 120
Selecting meaningful features 123
L1 and L2 regularization as penalties against model complexity 124
A geometric interpretation of L2 regularization 124
Sparse solutions with L1 regularization 126
Sequential feature selection algorithms 130
Assessing feature importance with random forests 136
Summary 139
Chapter 5: Compressing Data via Dimensionality Reduction 141
Unsupervised dimensionality reduction via principal
component analysis 142
The main steps behind principal component analysis 142
Extracting the principal components step by step 144
Total and explained variance 147
Feature transformation 148
Principal component analysis in scikit-learn 151
Supervised data compression via linear discriminant analysis 155
Principal component analysis versus linear discriminant analysis 155
The inner workings of linear discriminant analysis 156
Computing the scatter matrices 157
Selecting linear discriminants for the new feature subspace 160
Projecting samples onto the new feature space 162
LDA via scikit-learn 163
Using kernel principal component analysis for nonlinear mappings 165
Kernel functions and the kernel trick 166
Implementing a kernel principal component analysis in Python 172
Example 1 — separating half-moon shapes 173
Example 2 — separating concentric circles 176
Projecting new data points 179
Kernel principal component analysis in scikit-learn 183

Summary 184

Liii]

Table of Contents

Chapter 6: Learning Best Practices for Model Evaluation and

Hyperparameter Tuning 185
Streamlining workflows with pipelines 185
Loading the Breast Cancer Wisconsin dataset 186
Combining transformers and estimators in a pipeline 187
Using k-fold cross-validation to assess model performance 189
The holdout method 190
K-fold cross-validation 191
Debugging algorithms with learning and validation curves 195
Diagnosing bias and variance problems with learning curves 196
Addressing over- and underfitting with validation curves 199
Fine-tuning machine learning models via grid search 201
Tuning hyperparameters via grid search 201
Algorithm selection with nested cross-validation 203
Looking at different performance evaluation metrics 205
Reading a confusion matrix 206
Optimizing the precision and recall of a classification model 207
Plotting a receiver operating characteristic 210
Scoring metrics for multiclass classification 213
Dealing with class imbalance 214
Summary 216
Chapter 7: Combining Different Models for Ensemble Learning 219
Learning with ensembles 219
Combining classifiers via majority vote 224
Implementing a simple majority vote classifier 224
Using the majority voting principle to make predictions 231
Evaluating and tuning the ensemble classifier 234
Bagging — building an ensemble of classifiers from
bootstrap samples 240
Bagging in a nutshell 240
Applying bagging to classify samples in the Wine dataset 242
Leveraging weak learners via adaptive boosting 246
How boosting works 246
Applying AdaBoost using scikit-learn 251
Summary 254
Chapter 8: Applying Machine Learning to Sentiment Analysis 255
Preparing the IMDb movie review data for text processing 256
Obtaining the movie review dataset 256
Preprocessing the movie dataset into more convenient format 257

[iv]

Table of Contents

Introducing the bag-of-words model 259
Transforming words into feature vectors 259
Assessing word relevancy via term frequency-inverse
document frequency 261
Cleaning text data 264
Processing documents into tokens 266

Training a logistic regression model for document classification 268

Working with bigger data — online algorithms and

out-of-core learning 270

Topic modeling with Latent Dirichlet Allocation 274
Decomposing text documents with LDA 275
LDA with scikit-learn 275

Summary 279

Chapter 9: Embedding a Machine Learning Model into a
Web Application 281

Serializing fitted scikit-learn estimators 282

Setting up an SQLite database for data storage 285

Developing a web application with Flask 287
Ouir first Flask web application 288
Form validation and rendering 290

Setting up the directory structure 291
Implementing a macro using the Jinja2 templating engine 292
Adding style via CSS 293
Creating the result page 294

Turning the movie review classifier into a web application 294
Files and folders — looking at the directory tree 296
Implementing the main application as app.py 298
Setting up the review form 300
Creating a results page template 302

Deploying the web application to a public server 304
Creating a PythonAnywhere account 304
Uploading the movie classifier application 305
Updating the movie classifier 306

Summary 308

Chapter 10: Predicting Continuous Target Variables
with Regression Analysis 309

Introducing linear regression 310
Simple linear regression 310
Multiple linear regression 311

Exploring the Housing dataset 312

Loading the Housing dataset into a data frame 313

[v]

Table of Contents

Visualizing the important characteristics of a dataset 314
Looking at relationships using a correlation matrix 316
Implementing an ordinary least squares linear regression model 319
Solving regression for regression parameters with gradient descent 319
Estimating coefficient of a regression model via scikit-learn 324
Fitting a robust regression model using RANSAC 325
Evaluating the performance of linear regression models 328
Using regularized methods for regression 332
Turning a linear regression model into a curve — polynomial
regression 334
Adding polynomial terms using scikit-learn 334
Modeling nonlinear relationships in the Housing dataset 336
Dealing with nonlinear relationships using random forests 339
Decision tree regression 340
Random forest regression 342
Summary 345
Chapter 11: Working with Unlabeled Data — Clustering Analysis 347
Grouping objects by similarity using k-means 348
K-means clustering using scikit-learn 348
A smarter way of placing the initial cluster centroids using k-means++ 353
Hard versus soft clustering 354
Using the elbow method to find the optimal number of clusters 357
Quantifying the quality of clustering via silhouette plots 358
Organizing clusters as a hierarchical tree 363
Grouping clusters in bottom-up fashion 364
Performing hierarchical clustering on a distance matrix 365
Attaching dendrograms to a heat map 369
Applying agglomerative clustering via scikit-learn 371
Locating regions of high density via DBSCAN 372
Summary 378
Chapter 12: Implementing a Multilayer Artificial Neural
Network from Scratch 379
Modeling complex functions with artificial neural networks 380
Single-layer neural network recap 382
Introducing the multilayer neural network architecture 384
Activating a neural network via forward propagation 387
Classifying handwritten digits 389
Obtaining the MNIST dataset 390
Implementing a multilayer perceptron 396

[vi]

Table of Contents

Training an artificial neural network 407
Computing the logistic cost function 408
Developing your intuition for backpropagation 411
Training neural networks via backpropagation 412

About the convergence in neural networks 417

A few last words about the neural network implementation 418

Summary 419

Chapter 13: Parallelizing Neural Network Training
with TensorFlow 421

TensorFlow and training performance 421
What is TensorFlow? 423
How we will learn TensorFlow 424
First steps with TensorFlow 424
Working with array structures 427
Developing a simple model with the low-level TensorFlow API 428

Training neural networks efficiently with high-level TensorFlow APIs 433
Building multilayer neural networks using TensorFlow's Layers API 434
Developing a multilayer neural network with Keras 438

Choosing activation functions for multilayer networks 443
Logistic function recap 444
Estimating class probabilities in multiclass classification via the
softmax function 446
Broadening the output spectrum using a hyperbolic tangent 447
Rectified linear unit activation 449

Summary 451

Chapter 14: Going Deeper — The Mechanics of TensorFlow 453

Key features of TensorFlow 454

TensorFlow ranks and tensors 454
How to get the rank and shape of atensor 455

Understanding TensorFlow's computation graphs 456

Placeholders in TensorFlow 459
Defining placeholders 459
Feeding placeholders with data 460
Defining placeholders for data arrays with varying batchsizes 461

Variables in TensorFlow 462
Defining variables 463
Initializing variables 465
Variable scope 466
Reusing variables 468

[vii]

Table of Contents

Building a regression model 471
Executing objects in a TensorFlow graph using their names 475
Saving and restoring a model in TensorFlow 476
Transforming Tensors as multidimensional data arrays 479
Utilizing control flow mechanics in building graphs 483
Visualizing the graph with TensorBoard 487
Extending your TensorBoard experience 490
Summary 491
Chapter 15: Classifying Images with Deep Convolutional
Neural Networks 493
Building blocks of convolutional neural networks 494
Understanding CNNs and learning feature hierarchies 494
Performing discrete convolutions 496
Performing a discrete convolution in one dimension 496
The effect of zero-padding in a convolution 499
Determining the size of the convolution output 501
Performing a discrete convolution in 2D 502
Subsampling 506
Putting everything together to build a CNN 508
Working with multiple input or color channels 508
Regularizing a neural network with dropout 512
Implementing a deep convolutional neural network
using TensorFlow 514
The multilayer CNN architecture 514
Loading and preprocessing the data 516
Implementing a CNN in the TensorFlow low-level API 517
Implementing a CNN in the TensorFlow Layers API 530
Summary 536
Chapter 16: Modeling Sequential Data Using Recurrent
Neural Networks 537
Introducing sequential data 538
Modeling sequential data — order matters 538
Representing sequences 539
The different categories of sequence modeling 540
RNNs for modeling sequences 541
Understanding the structure and flow of an RNN 541
Computing activations in an RNN 543
The challenges of learning long-range interactions 546
LSTM units 548

[viii]

Table of Contents

Implementing a multilayer RNN for sequence modeling in

TensorFlow 550
Project one — performing sentiment analysis of IMDb movie
reviews using multilayer RNNs 551
Preparing the data 552
Embedding 556
Building an RNN model 558
The SentimentRNN class constructor 559
The build method 560
Step 1 — defining multilayer RNN cells 562
Step 2 — defining the initial states for the RNN cells 562
Step 3 — creating the RNN using the RNN cells and their states 563
The train method 563
The predict method 565
Instantiating the SentimentRNN class 565
Training and optimizing the sentiment analysis RNN model 566
Project two — implementing an RNN for character-level
language modeling in TensorFlow 567
Preparing the data 568
Building a character-level RNN model 572
The constructor 573
The build method 574
The train method 576
The sample method 578
Creating and training the CharRNN Model 579
The CharRNN model in the sampling mode 580
Chapter and book summary 580

Index 583

Lix]

Preface

Through exposure to the news and social media, you are probably aware of the fact
that machine learning has become one of the most exciting technologies of our time
and age. Large companies, such as Google, Facebook, Apple, Amazon, and IBM,
heavily invest in machine learning research and applications for good reasons. While
it may seem that machine learning has become the buzzword of our time and age,

it is certainly not a fad. This exciting field opens the way to new possibilities and

has become indispensable to our daily lives. This is evident in talking to the voice
assistant on our smartphones, recommending the right product for our customers,
preventing credit card fraud, filtering out spam from our email inboxes, detecting
and diagnosing medical diseases, the list goes on and on.

If you want to become a machine learning practitioner, a better problem solver,

or maybe even consider a career in machine learning research, then this book is for
you. However, for a novice, the theoretical concepts behind machine learning can
be quite overwhelming. Many practical books have been published in recent years
that will help you get started in machine learning by implementing powerful
learning algorithms.

Getting exposed to practical code examples and working through example
applications of machine learning are a great way to dive into this field. Concrete
examples help illustrate the broader concepts by putting the learned material directly
into action. However, remember that with great power comes great responsibility! In
addition to offering a hands-on experience with machine learning using the Python
programming languages and Python-based machine learning libraries, this book
introduces the mathematical concepts behind machine learning algorithms, which is
essential for using machine learning successfully. Thus, this book is different from

a purely practical book; it is a book that discusses the necessary details regarding
machine learning concepts and offers intuitive yet informative explanations of how
machine learning algorithms work, how to use them, and most importantly, how to
avoid the most common pitfalls.

[xi]

Preface

Currently, if you type "machine learning" as a search term in Google Scholar, it
returns an overwhelmingly large number of publications—1,800,000. Of course,

we cannot discuss the nitty-gritty of all the different algorithms and applications
that have emerged in the last 60 years. However, in this book, we will embark on

an exciting journey that covers all the essential topics and concepts to give you a
head start in this field. If you find that your thirst for knowledge is not satisfied, this
book references many useful resources that can be used to follow up on the essential
breakthroughs in this field.

If you have already studied machine learning theory in detail, this book will show
you how to put your knowledge into practice. If you have used machine learning
techniques before and want to gain more insight into how machine learning actually
works, this book is for you. Don't worry if you are completely new to the machine
learning field; you have even more reason to be excited. Here is a promise that
machine learning will change the way you think about the problems you want to
solve and will show you how to tackle them by unlocking the power of data.

Before we dive deeper into the machine learning field, let's answer your most
important question, "Why Python?" The answer is simple: it is powerful yet very
accessible. Python has become the most popular programming language for data
science because it allows us to forget about the tedious parts of programming and
offers us an environment where we can quickly jot down our ideas and put concepts
directly into action.

We, the authors, can truly say that the study of machine learning has made us

better scientists, thinkers, and problem solvers. In this book, we want to share this
knowledge with you. Knowledge is gained by learning. The key is our enthusiasm,
and the real mastery of skills can only be achieved by practice. The road ahead may
be bumpy on occasions and some topics may be more challenging than others, but
we hope that you will embrace this opportunity and focus on the reward. Remember
that we are on this journey together, and throughout this book, we will add many
powerful techniques to your arsenal that will help us solve even the toughest
problems the data-driven way.

What this book covers

Chapter 1, Giving Computers the Ability to Learn from Data, introduces you to the main
subareas of machine learning in order to tackle various problem tasks. In addition,
it discusses the essential steps for creating a typical machine learning model by
building a pipeline that will guide us through the following chapters.

[xii]

Preface

Chapter 2, Training Simple Machine Learning Algorithms for Classification, goes back

to the origins of machine learning and introduces binary perceptron classifiers and
adaptive linear neurons. This chapter is a gentle introduction to the fundamentals
of pattern classification and focuses on the interplay of optimization algorithms and
machine learning.

Chapter 3, A Tour of Machine Learning Classifiers Using scikit-learn, describes the
essential machine learning algorithms for classification and provides practical
examples using one of the most popular and comprehensive open source machine
learning libraries: scikit-learn.

Chapter 4, Building Good Training Sets — Data Preprocessing, discusses how to deal with
the most common problems in unprocessed datasets, such as missing data. It also
discusses several approaches to identify the most informative features in datasets
and teaches you how to prepare variables of different types as proper input for
machine learning algorithms.

Chapter 5, Compressing Data via Dimensionality Reduction, describes the essential
techniques to reduce the number of features in a dataset to smaller sets while
retaining most of their useful and discriminatory information. It discusses the
standard approach to dimensionality reduction via principal component analysis
and compares it to supervised and nonlinear transformation techniques.

Chapter 6, Learning Best Practices for Model Evaluation and Hyperparameter Tuning,
discusses the dos and don'ts for estimating the performances of predictive models.
Moreover, it discusses different metrics for measuring the performance of our
models and techniques to fine-tune machine learning algorithms.

Chapter 7, Combining Different Models for Ensemble Learning, introduces you to the
different concepts of combining multiple learning algorithms effectively. It teaches
you how to build ensembles of experts to overcome the weaknesses of individual
learners, resulting in more accurate and reliable predictions.

Chapter 8, Applying Machine Learning to Sentiment Analysis, discusses the essential
steps to transform textual data into meaningful representations for machine learning
algorithms to predict the opinions of people based on their writing.

Chapter 9, Embedding a Machine Learning Model into a Web Application, continues with
the predictive model from the previous chapter and walks you through the essential
steps of developing web applications with embedded machine learning models.

[xiii]

Preface

Chapter 10, Predicting Continuous Target Variables with Regression Analysis, discusses
the essential techniques for modeling linear relationships between target and
response variables to make predictions on a continuous scale. After introducing
different linear models, it also talks about polynomial regression and tree-based
approaches.

Chapter 11, Working with Unlabeled Data - Clustering Analysis, shifts the focus to a
different subarea of machine learning, unsupervised learning. We apply algorithms
from three fundamental families of clustering algorithms to find groups of objects
that share a certain degree of similarity.

Chapter 12, Implementing a Multilayer Artificial Neural Network from Scratch,
extends the concept of gradient-based optimization, which we first introduced in
Chapter 2, Training Simple Machine Learning Algorithms for Classification, to build
powerful, multilayer neural networks based on the popular backpropagation
algorithm in Python.

Chapter 13, Parallelizing Neural Network Training with TensorFlow, builds upon
the knowledge from the previous chapter to provide you with a practical guide
for training neural networks more efficiently. The focus of this chapter is on
TensorFlow, an open source Python library that allows us to utilize multiple
cores of modern GPUs.

Chapter 14, Going Deeper — The Mechanics of TensorFlow, covers TensorFlow in greater
detail explaining its core concepts of computational graphs and sessions. In addition,
this chapter covers topics such as saving and visualizing neural network graphs,
which will come in very handy during the remaining chapters of this book.

Chapter 15, Classifying Images with Deep Convolutional Neural Networks, discusses deep
neural network architectures that have become the new standard in computer vision
and image recognition fields —convolutional neural networks. This chapter will
discuss the main concepts between convolutional layers as a feature extractor and
apply convolutional neural network architectures to an image classification task to
achieve almost perfect classification accuracy.

Chapter 16, Modeling Sequential Data Using Recurrent Neural Networks, introduces
another popular neural network architecture for deep learning that is especially well
suited for working with sequential data and time series data. In this chapter, we will
apply different recurrent neural network architectures to text data. We will start
with a sentiment analysis task as a warm-up exercise and will learn how to generate
entirely new text.

[xiv]

Preface

What you need for this book

The execution of the code examples provided in this book requires an installation
of Python 3.6.0 or newer on macOS, Linux, or Microsoft Windows. We will make
frequent use of Python's essential libraries for scientific computing throughout this
book, including SciPy, NumPy, scikit-learn, Matplotlib, and pandas.

The first chapter will provide you with instructions and useful tips to set up your
Python environment and these core libraries. We will add additional libraries to
our repertoire; moreover, installation instructions are provided in the respective
chapters: the NLTK library for natural language processing (Chapter 8, Applying
Machine Learning to Sentiment Analysis), the Flask web framework (Chapter 9,
Embedding a Machine Learning Model into a Web Application), the Seaborn library
for statistical data visualization (Chapter 10, Predicting Continuous Target Variables
with Regression Analysis), and TensorFlow for efficient neural network training on
graphical processing units (Chapters 13 to 16).

Who this book is for

If you want to find out how to use Python to start answering critical questions of
your data, pick up Python Machine Learning, Second Edition—whether you want to
start from scratch or extend your data science knowledge, this is an essential and
unmissable resource.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Using the out_file=None setting, we directly assigned the dot data to a dot_data
variable, instead of writing an intermediate tree.dot file to disk."

[xv]

Preface

A block of code is set as follows:

>>> from sklearn.neighbors import KNeighborsClassifier

>>> knn = KNeighborsClassifier (n neighbors=5, p=2,
metric="'minkowski')

>>> knn.fit (X train std, y train)

>>> plot decision regions (X combined std, y combined,

L. classifier=knn, test idx=range(105,150))

>>> plt.xlabel ('petal length [standardized]')

>>> plt.ylabel ('petal width [standardized]')

>>> plt.show()

Any command-line input or output is written as follows:
pip3 install graphviz

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "After we
click on the Dashboard button in the top-right corner, we have access to the control
panel shown at the top of the page.”

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply email feedbacke@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www . packtpub.com/authors.

[xvi]

Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files emailed directly
to you.

You can download the code files by following these steps:

Log in or register to our website using your email address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.

N o g~ wDd e

Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's web page at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

* WInRAR / 7-Zip for Windows

e Zipeg / iZip / UnRarX for Mac

e 7-Zip / PeaZip for Linux
The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Python-Machine-Learning-Second-Edition. We also

have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

[xvii]

Preface

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http: //www.packtpub.
com/sites/default/files/downloads/PythonMachinelLearningSecondEdition
ColorImages.pdf. In addition, lower resolution color images are embedded in the
code notebooks of this book that come bundled with the example code files.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrightepacktpub.com With a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questionse@packtpub.com, and we will do our best to address the problem.

[xviii]

Giving Computers the Abllity
to Learn from Data

In my opinion, machine learning, the application and science of algorithms that
make sense of data, is the most exciting field of all the computer sciences! We are
living in an age where data comes in abundance; using self-learning algorithms
from the field of machine learning, we can turn this data into knowledge. Thanks to
the many powerful open source libraries that have been developed in recent years,
there has probably never been a better time to break into the machine learning field
and learn how to utilize powerful algorithms to spot patterns in data and make
predictions about future events.

In this chapter, you will learn about the main concepts and different types of
machine learning. Together with a basic introduction to the relevant terminology,
we will lay the groundwork for successfully using machine learning techniques for
practical problem solving.

In this chapter, we will cover the following topics:

* The general concepts of machine learning

* The three types of learning and basic terminology

e The building blocks for successfully designing machine learning systems
* Installing and setting up Python for data analysis and machine learning

[1]

Giving Computers the Ability to Learn from Data

Building intelligent machines to
transform data into knowledge

In this age of modern technology, there is one resource that we have in abundance: a
large amount of structured and unstructured data. In the second half of the twentieth
century, machine learning evolved as a subfield of Artificial Intelligence (AI) that
involved self-learning algorithms that derived knowledge from data in order to make
predictions. Instead of requiring humans to manually derive rules and build models
from analyzing large amounts of data, machine learning offers a more efficient
alternative for capturing the knowledge in data to gradually improve the performance
of predictive models and make data-driven decisions. Not only is machine learning
becoming increasingly important in computer science research, but it also plays an
ever greater role in our everyday lives. Thanks to machine learning, we enjoy robust
email spam filters, convenient text and voice recognition software, reliable web search
engines, challenging chess-playing programs, and, hopefully soon, safe and efficient
self-driving cars.

The three different types of machine
learning

In this section, we will take a look at the three types of machine learning: supervised
learning, unsupervised learning, and reinforcement learning. We will learn about
the fundamental differences between the three different learning types and, using
conceptual examples, we will develop an intuition for the practical problem domains
where these can be applied:

Labeled dara
Supervised Learning ¥ Dirsct feadback
* Predict outcome/future

? Mo labels/targets
Unsupervizsed Learning » Mo feedback
Find hidden structure in data

» Decision process

Reinforcement Learning ¥ Reward system

* Learn series of actions

[2]

Chapter 1

Making predictions about the future with
supervised learning

The main goal in supervised learning is to learn a model from labeled training data
that allows us to make predictions about unseen or future data. Here, the term
supervised refers to a set of samples where the desired output signals (labels) are
already known.

Labels

Training Drata
¥

Machine Learning

Algorithm

|
Y
[Mew Data]~h[Predictive Maodel]~I-[Prediction

y

4

Considering the example of email spam filtering, we can train a model using a
supervised machine learning algorithm on a corpus of labeled emails, emails that
are correctly marked as spam or not-spam, to predict whether a new email belongs
to either of the two categories. A supervised learning task with discrete class labels,
such as in the previous email spam filtering example, is also called a classification
task. Another subcategory of supervised learning is regression, where the outcome
signal is a continuous value:

Classification for predicting class labels

Classification is a subcategory of supervised learning where the goal is to predict
the categorical class labels of new instances, based on past observations. Those

class labels are discrete, unordered values that can be understood as the group
memberships of the instances. The previously mentioned example of email spam
detection represents a typical example of a binary classification task, where the
machine learning algorithm learns a set of rules in order to distinguish between two
possible classes: spam and non-spam emails.

[3]

Giving Computers the Ability to Learn from Data

However, the set of class labels does not have to be of a binary nature. The predictive
model learned by a supervised learning algorithm can assign any class label that was
presented in the training dataset to a new, unlabeled instance. A typical example of

a multiclass classification task is handwritten character recognition. Here, we could
collect a training dataset that consists of multiple handwritten examples of each letter
in the alphabet. Now, if a user provides a new handwritten character via an input
device, our predictive model will be able to predict the correct letter in the alphabet
with certain accuracy. However, our machine learning system would be unable to
correctly recognize any of the digits zero to nine, for example, if they were not part of
our training dataset.

The following figure illustrates the concept of a binary classification task given 30
training samples; 15 training samples are labeled as negative class (minus signs) and
15 training samples are labeled as positive class (plus signs). In this scenario, our
dataset is two-dimensional, which means that each sample has two values associated
with it: x; and x,. Now, we can use a supervised machine learning algorithm to
learn a rule—the decision boundary represented as a dashed line—that can separate
those two classes and classify new data into each of those two categories given its x;
and x, values:

L

[4]

Chapter 1

Regression for predicting continuous outcomes

We learned in the previous section that the task of classification is to assign
categorical, unordered labels to instances. A second type of supervised learning is
the prediction of continuous outcomes, which is also called regression analysis. In
regression analysis, we are given a number of predictor (explanatory) variables and
a continuous response variable (outcome or target), and we try to find a relationship
between those variables that allows us to predict an outcome.

For example, let's assume that we are interested in predicting the math SAT scores of
our students. If there is a relationship between the time spent studying for the test and
the final scores, we could use it as training data to learn a model that uses the study
time to predict the test scores of future students who are planning to take this test.

The term regression was devised by Francis Galton in his article
. Regression towards Mediocrity in Hereditary Stature in 1886. Galton
% described the biological phenomenon that the variance of height
L in a population does not increase over time. He observed that the
height of parents is not passed on to their children, but instead the
children's height is regressing towards the population mean.

The following figure illustrates the concept of linear regression. Given a predictor
variable x and a response variable y, we fit a straight line to this data that minimizes
the distance—most commonly the average squared distance—between the sample
points and the fitted line. We can now use the intercept and slope learned from this
data to predict the outcome variable of new data:

[5]

Giving Computers the Ability to Learn from Data

Solving interactive problems with
reinforcement learning

Another type of machine learning is reinforcement learning. In reinforcement
learning, the goal is to develop a system (agent) that improves its performance based
on interactions with the environment. Since the information about the current state
of the environment typically also includes a so-called reward signal, we can think

of reinforcement learning as a field related to supervised learning. However, in
reinforcement learning this feedback is not the correct ground truth label or value,
but a measure of how well the action was measured by a reward function. Through
its interaction with the environment, an agent can then use reinforcement learning to
learn a series of actions that maximizes this reward via an exploratory trial-and-error
approach or deliberative planning.

A popular example of reinforcement learning is a chess engine. Here, the
agent decides upon a series of moves depending on the state of the board (the
environment), and the reward can be defined as win or lose at the end of the game:

B

Y Action

There are many different subtypes of reinforcement learning. However, a general
scheme is that the agent in reinforcement learning tries to maximize the reward
by a series of interactions with the environment. Each state can be associated with
a positive or negative reward, and a reward can be defined as accomplishing an
overall goal, such as winning or losing a game of chess. For instance, in chess the
outcome of each move can be thought of as a different state of the environment.
To explore the chess example further, let's think of visiting certain locations on the
chess board as being associated with a positive event—for instance, removing an
opponent's chess piece from the board or threatening the queen. Other positions,
however, are associated with a negative event, such as losing a chess piece to the
opponent in the following turn. Now, not every turn results in the removal of a chess
piece, and reinforcement learning is concerned with learning the series of steps by
maximizing a reward based on immediate and delayed feedback.

While this section provides a basic overview of reinforcement learning, please note
that applications of reinforcement learning are beyond the scope of this book, which
primarily focusses on classification, regression analysis, and clustering.

[6]

Chapter 1

Discovering hidden structures with
unsupervised learning

In supervised learning, we know the right answer beforehand when we train

our model, and in reinforcement learning, we define a measure of reward for
particular actions by the agent. In unsupervised learning, however, we are dealing
with unlabeled data or data of unknown structure. Using unsupervised learning
techniques, we are able to explore the structure of our data to extract meaningful
information without the guidance of a known outcome variable or reward function.

Finding subgroups with clustering

Clustering is an exploratory data analysis technique that allows us to organize a
pile of information into meaningful subgroups (clusters) without having any prior
knowledge of their group memberships. Each cluster that arises during the analysis
defines a group of objects that share a certain degree of similarity but are more
dissimilar to objects in other clusters, which is why clustering is also sometimes
called unsupervised classification. Clustering is a great technique for structuring
information and deriving meaningful relationships from data. For example, it allows
marketers to discover customer groups based on their interests, in order to develop
distinct marketing programs.

The following figure illustrates how clustering can be applied to organizing
unlabeled data into three distinct groups based on the similarity of their features

X, and Xx,:

-
..-rD——._
.H'D Sy,
’ ® g
e ® g @\
100 a2 @ CII
5 s @
»® e %
XI \-E}_O.a-"f
-
_ ® g~
PO ‘o N
') [] IIQ @ '1,
@) ® _®
\ep @ | ®g |
o Df e @ @
@ \
- \UDO /
“LE_.#D/
X4

Giving Computers the Ability to Learn from Data

Dimensionality reduction for data compression

Another subfield of unsupervised learning is dimensionality reduction. Often we
are working with data of high dimensionality—each observation comes with a high
number of measurements—that can present a challenge for limited storage space
and the computational performance of machine learning algorithms. Unsupervised
dimensionality reduction is a commonly used approach in feature preprocessing

to remove noise from data, which can also degrade the predictive performance of
certain algorithms, and compress the data onto a smaller dimensional subspace
while retaining most of the relevant information.

Sometimes, dimensionality reduction can also be useful for visualizing data,

for example, a high-dimensional feature set can be projected onto one-, two-, or
three-dimensional feature spaces in order to visualize it via 3D or 2D scatterplots or
histograms. The following figure shows an example where nonlinear dimensionality
reduction was applied to compress a 3D Swiss Roll onto a new 2D feature subspace:

Introduction to the basic terminology and
notations

Now that we have discussed the three broad categories of machine learning—
supervised, unsupervised, and reinforcement learning—Ilet us have a look at the
basic terminology that we will be using throughout the book. The following table
depicts an excerpt of the Iris dataset, which is a classic example in the field of
machine learning. The Iris dataset contains the measurements of 150 Iris flowers
from three different species —Setosa, Versicolor, and Virginica. Here, each flower
sample represents one row in our dataset, and the flower measurements in
centimeters are stored as columns, which we also call the features of the dataset:

(8]

Chapter 1

Petal
Samples W
(instances, ahservations)

Sepal Sepal
length width

Petal
length

50 |64 A5

150 | 50 10 51 1.8 Virginiea

| I : ~

/ \ Class labels -

Features (targets)
(attributes, measurements, dimensions)

To keep the notation and implementation simple yet efficient, we will make use of
some of the basics of linear algebra. In the following chapters, we will use a matrix
and vector notation to refer to our data. We will follow the common convention to
represent each sample as a separate row in a feature matrix X, where each feature is
stored as a separate column.

The Iris dataset consisting of 150 samples and four features can then be written as a
150x4 matrix X e R'™:

(150) x(lso) x(lSO) x(lSO)

[9]

Giving Computers the Ability to Learn from Data

For the rest of this book, unless noted otherwise, we will use the
superscript i to refer to the ith training sample, and the subscript j to
refer to the jth dimension of the training dataset.

We use lowercase, bold-face letters to refer to vectors (x € R™) and
uppercase, bold-face letters to refer to matrices (X € R™™). To refer
to single elements in a vector or matrix, we write the letters in italics

(x") or x((,”n)) , respectively).

For example, xll % refers to the first dimension of flower sample 150,
the sepal length. Thus, each row in this feature matrix represents one
flower instance and can be written as a four-dimensional row vector

x(l) c R1><4 :

And each feature dimension is a 150-dimensional column vector
x; e R"™ For example:

Similarly, we store the target variables (here, class labels) as a
150-dimensional column vector:

y=| ... |(» e {Setosa, Versicolor, Virginica})

[10]

Chapter 1

A roadmap for building machine learning
systems

In previous sections, we discussed the basic concepts of machine learning and

the three different types of learning. In this section, we will discuss the other
important parts of a machine learning system accompanying the learning algorithm.
The following diagram shows a typical workflow for using machine learning in
predictive modeling, which we will discuss in the following subsections:

Fenure Extraction and Scaling
Feature Selection

Dimensionality Reduction
Sampling

Training Daraser Y -
Learning |
FEE N [N

Raw +[Test Daraser J--- ———————] W | +
[Drata]) L | i
——t g m—— === —————— - | Labels
Preprocessing Learning Evaluation] Prediction

Madel Selection
Cross-Validation

Performance Metrics
Hyperparameter Qptimization

(1]

Giving Computers the Ability to Learn from Data

Preprocessing — getting data into shape

Let's begin with discussing the roadmap for building machine learning systems.
Raw data rarely comes in the form and shape that is necessary for the optimal
performance of a learning algorithm. Thus, the preprocessing of the data is one of
the most crucial steps in any machine learning application. If we take the Iris flower
dataset from the previous section as an example, we can think of the raw data as a
series of flower images from which we want to extract meaningful features. Useful
features could be the color, the hue, the intensity of the flowers, the height, and

the flower lengths and widths. Many machine learning algorithms also require
that the selected features are on the same scale for optimal performance, which is
often achieved by transforming the features in the range [0, 1] or a standard normal
distribution with zero mean and unit variance, as we will see in later chapters.

Some of the selected features may be highly correlated and therefore redundant

to a certain degree. In those cases, dimensionality reduction techniques are useful
for compressing the features onto a lower dimensional subspace. Reducing the
dimensionality of our feature space has the advantage that less storage space

is required, and the learning algorithm can run much faster. In certain cases,
dimensionality reduction can also improve the predictive performance of a model
if the dataset contains a large number of irrelevant features (or noise), that is, if the
dataset has a low signal-to-noise ratio.

To determine whether our machine learning algorithm not only performs well on the
training set but also generalizes well to new data, we also want to randomly divide
the dataset into a separate training and test set. We use the training set to train and
optimize our machine learning model, while we keep the test set until the very end
to evaluate the final model.

Training and selecting a predictive model

As we will see in later chapters, many different machine learning algorithms have
been developed to solve different problem tasks. An important point that can be
summarized from David Wolpert's famous No free lunch theorems is that we can't

get learning "for free" (The Lack of A Priori Distinctions Between Learning Algorithms,
D.H. Wolpert 1996; No free lunch theorems for optimization, D.H. Wolpert and W.G.
Macready, 1997). Intuitively, we can relate this concept to the popular saying, |
suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were

a nail (Abraham Maslow, 1966). For example, each classification algorithm has its
inherent biases, and no single classification model enjoys superiority if we don't make
any assumptions about the task. In practice, it is therefore essential to compare at
least a handful of different algorithms in order to train and select the best performing
model. But before we can compare different models, we first have to decide upon a
metric to measure performance. One commonly used metric is classification accuracy,
which is defined as the proportion of correctly classified instances.

[12]

Chapter 1

One legitimate question to ask is this: how do we know which model performs well on
the final test dataset and real-world data if we don't use this test set for the model selection,
but keep it for the final model evaluation? In order to address the issue embedded in
this question, different cross-validation techniques can be used where the training
dataset is further divided into training and validation subsets in order to estimate
the generalization performance of the model. Finally, we also cannot expect that
the default parameters of the different learning algorithms provided by software
libraries are optimal for our specific problem task. Therefore, we will make
frequent use of hyperparameter optimization techniques that help us to fine-tune
the performance of our model in later chapters. Intuitively, we can think of those
hyperparameters as parameters that are not learned from the data but represent the
knobs of a model that we can turn to improve its performance. This will become
much clearer in later chapters when we see actual examples.

Evaluating models and predicting unseen
data instances

After we have selected a model that has been fitted on the training dataset, we can
use the test dataset to estimate how well it performs on this unseen data to estimate
the generalization error. If we are satisfied with its performance, we can now use
this model to predict new, future data. It is important to note that the parameters for
the previously mentioned procedures, such as feature scaling and dimensionality
reduction, are solely obtained from the training dataset, and the same parameters are
later reapplied to transform the test dataset, as well as any new data samples—the
performance measured on the test data may be overly optimistic otherwise.

Using Python for machine learning

Python is one of the most popular programming languages for data science and
therefore enjoys a large number of useful add-on libraries developed by its great
developer and and open-source community.

Although the performance of interpreted languages, such as Python, for
computation-intensive tasks is inferior to lower-level programming languages,
extension libraries such as NumPy and SciPy have been developed that build upon
lower-layer Fortran and C implementations for fast and vectorized operations on
multidimensional arrays.

For machine learning programming tasks, we will mostly refer to the scikit-learn
library, which is currently one of the most popular and accessible open source
machine learning libraries.

[13]

Giving Computers the Ability to Learn from Data

Installing Python and packages from the
Python Package Index

Python is available for all three major operating systems—Microsoft Windows,
macOS, and Linux—and the installer, as well as the documentation, can be
downloaded from the official Python website: https: //www.python.org.

This book is written for Python version 3.5.2 or higher, and it is recommended
you use the most recent version of Python 3 that is currently available, although
most of the code examples may also be compatible with Python 2.7.13 or higher.
If you decide to use Python 2.7 to execute the code examples, please make sure
that you know about the major differences between the two Python versions.

A good summary of the differences between Python 3.5 and 2.7 can be found

at https://wiki.python.org/moin/Python2orPython3.

The additional packages that we will be using throughout this book can be
installed via the pip installer program, which has been part of the Python
standard library since Python 3.3. More information about pip can be found
at https://docs.python.org/3/installing/index.html.

After we have successfully installed Python, we can execute pip from the Terminal
to install additional Python packages:

pip install SomePackage

Already installed packages can be updated via the - -upgrade flag:

pip install SomePackage --upgrade

Using the Anaconda Python distribution and
package manager

A highly recommended alternative Python distribution for scientific

computing is Anaconda by Continuum Analytics. Anaconda is a free—including

for commercial use—enterprise-ready Python distribution that bundles all

the essential Python packages for data science, math, and engineering in one
user-friendly cross-platform distribution. The Anaconda installer can be downloaded
at http://continuum.io/downloads, and an Anaconda quick-start guide is
available at https://conda.io/docs/test-drive.html

After successfully installing Anaconda, we can install new Python packages using
the following command:

conda install SomePackage

[14]

Chapter 1

Existing packages can be updated using the following command:

conda update SomePackage

Packages for scientific computing, data
science, and machine learning

Throughout this book, we will mainly use NumPy's multidimensional arrays to store
and manipulate data. Occasionally, we will make use of pandas, which is a library
built on top of NumPy that provides additional higher-level data manipulation

tools that make working with tabular data even more convenient. To augment our
learning experience and visualize quantitative data, which is often extremely useful
to intuitively make sense of it, we will use the very customizable Matplotlib library.

The version numbers of the major Python packages that were used for writing this
book are mentioned in the following list. Please make sure that the version numbers
of your installed packages are equal to, or greater than, those version numbers to
ensure the code examples run correctly:

* NumPy1.12.1

e SciPy 0.19.0

e scikit-learn 0.18.1
* Matplotlib 2.0.2

e pandas 0.20.1

Summary

In this chapter, we explored machine learning at a very high level and familiarized
ourselves with the big picture and major concepts that we are going to explore in the
following chapters in more detail. We learned that supervised learning is composed
of two important subfields: classification and regression. While classification models
allow us to categorize objects into known classes, we can use regression analysis to
predict the continuous outcomes of target variables. Unsupervised learning not only
offers useful techniques for discovering structures in unlabeled data, but it can also
be useful for data compression in feature preprocessing steps. We briefly went over
the typical roadmap for applying machine learning to problem tasks, which we will
use as a foundation for deeper discussions and hands-on examples in the following
chapters. Eventually, we set up our Python environment and installed and updated
the required packages to get ready to see machine learning in action.

[15]

Giving Computers the Ability to Learn from Data

Later in this book, in addition to machine learning itself, we will also introduce
different techniques to preprocess our dataset, which will help us to get the best
performance out of different machine learning algorithms. While we will cover
classification algorithms quite extensively throughout the book, we will also explore
different techniques for regression analysis and clustering.

We have an exciting journey ahead, covering many powerful techniques in the vast
field of machine learning. However, we will approach machine learning one step

at a time, building upon our knowledge gradually throughout the chapters of this
book. In the following chapter, we will start this journey by implementing one of
the earliest machine learning algorithms for classification, which will prepare us for
Chapter 3, A Tour of Machine Learning Classifiers Using scikit-learn, where we cover
more advanced machine learning algorithms using the scikit-learn open source
machine learning library.

[16]

Training Simple Machine
Learning Algorithms for
Classification

In this chapter, we will make use of two of the first algorithmically described
machine learning algorithms for classification, the perceptron and adaptive linear
neurons. We will start by implementing a perceptron step by step in Python and
training it to classify different flower species in the Iris dataset. This will help us
understand the concept of machine learning algorithms for classification and how
they can be efficiently implemented in Python.

Discussing the basics of optimization using adaptive linear neurons will then lay the
groundwork for using more powerful classifiers via the scikit-learn machine learning
library in Chapter 3, A Tour of Machine Learning Classifiers Using scikit-learn.

The topics that we will cover in this chapter are as follows:

e Building an intuition for machine learning algorithms
e Using pandas, NumPy, and Matplotlib to read in, process, and visualize data
* Implementing linear classification algorithms in Python

[17]

Training Simple Machine Learning Algorithms for Classification

Artificial neurons — a brief glimpse into
the early history of machine learning

Before we discuss the perceptron and related algorithms in more detail, let us take

a brief tour through the early beginnings of machine learning. Trying to understand
how the biological brain works, in order to design Al, Warren McCullock and Walter
Pitts published the first concept of a simplified brain cell, the so-called McCullock-
Pitts (MCP) neuron, in 1943 (A Logical Calculus of the Ideas Immanent in Nervous
Activity, W. S. McCulloch and W. Pitts, Bulletin of Mathematical Biophysics, 5(4): 115-
133, 1943). Neurons are interconnected nerve cells in the brain that are involved

in the processing and transmitting of chemical and electrical signals, which is
illustrated in the following figure:

Axon
terminals
Myelin sheath
— th
—-
—
J » Output]
Input Dendrites | j Signals
Signals —pe = .
—
—»
—_— Cell nucleus

McCullock and Pitts described such a nerve cell as a simple logic gate with binary
outputs; multiple signals arrive at the dendrites, are then integrated into the cell
body, and, if the accumulated signal exceeds a certain threshold, an output signal is
generated that will be passed on by the axon.

Only a few years later, Frank Rosenblatt published the first concept of the perceptron
learning rule based on the MCP neuron model (The Perceptron: A Perceiving and
Recognizing Automaton, F. Rosenblatt, Cornell Aeronautical Laboratory, 1957). With his
perceptron rule, Rosenblatt proposed an algorithm that would automatically learn
the optimal weight coefficients that are then multiplied with the input features

in order to make the decision of whether a neuron fires or not. In the context of
supervised learning and classification, such an algorithm could then be used to
predict if a sample belongs to one class or the other.

[18]

Chapter 2

The formal definition of an artificial neuron

More formally, we can put the idea behind artificial neurons into the context of a
binary classification task where we refer to our two classes as 1 (positive class) and
-1 (negative class) for simplicity. We can then define a decision function (¢(z)) that
takes a linear combination of certain input values x and a corresponding weight
vector w, where z is the so-called netinput z=w,x, +...+w, x :

m~m

Wl xl
w=| : |, x=|:
W}’ﬂ xm

Now, if the net input of a particular sample x" is greater than a defined threshold &,
we predict class 1, and class -1 otherwise. In the perceptron algorithm, the decision
function ¢(-) is a variant of a unit step function:

¢(Z):{ lifz>0

—1 otherwise

For simplicity, we can bring the threshold & to the left side of the equation and define
aweight-zero as w, =—6 and x, =1 so that we write z in a more compact form:

_ T
Z=W X, + WX, +...+ W X, =W X

And:

—1 otherwise

¢(Z):{ 1ifz>0

In machine learning literature, the negative threshold, or weight, w, =-6, is usually
called the bias unit.

[19]

Training Simple Machine Learning Algorithms for Classification

In the following sections, we will often make use of basic notations
from linear algebra. For example, we will abbreviate the sum of

the products of the values in x and w using a vector dot product,
whereas superscript T stands for transpose, which is an operation that
transforms a column vector into a row vector and vice versa:

m

_ _ _ T
Z= WXy F WX AW, X, =)XW = WX

For example:

4
[1 2 3]x| 5|=1x4+2x5+3x6=32

VAN ‘

Furthermore, the transpose operation can also be applied to matrices
to reflect it over its diagonal, for example:
T

|1 35

12 4 6

In this book, we will only use very basic concepts from linear algebra;
however, if you need a quick refresher, please take a look at Zico
Kolter's excellent Linear Algebra Review and Reference, which is freely

available at http://www.cs.cmu.edu/~zkolter/course/
linalg/linalg notes.pdf.

1
3
5

(o) SN)

The following figure illustrates how the net input z = w’x is squashed into a binary
output (-1 or 1) by the decision function of the perceptron (left subfigure) and how it
can be used to discriminate between two linearly separable classes (right subfigure):

[20]

Chapter 2

GlwTx)=0
BwTx) +) \
diwx)<0 | d(wx)20
i
1 -S— =) e : + N
e © +
Xg © = : + +
+ Tx + o e : + + +
e © 1+ +
1 © o 1+ + T
© v+t
+ "

The perceptron learning rule

The whole idea behind the MCP neuron and Rosenblatt's thresholded perceptron
model is to use a reductionist approach to mimic how a single neuron in the brain
works: it either fires or it doesn't. Thus, Rosenblatt's initial perceptron rule is fairly
simple and can be summarized by the following steps:

1. Initialize the weights to 0 or small random numbers.
2. For each training sample x:

a. Compute the output value 3.

b. Update the weights.

Here, the output value is the class label predicted by the unit step function that we
defined earlier, and the simultaneous update of each weight w, in the weight vector
w can be more formally written as:

wo=w, + ij

The value of Aw,, which is used to update the weight w,, is calculated by the
perceptron learning rule:

[21]

Training Simple Machine Learning Algorithms for Classification

Where 7 is the learning rate (typically a constant between 0.0 and 1.0), s the

true class label of the ith training sample, and)3(") is the predicted class label.
It is important to note that all weights in the weight vector are being updated
simultaneously, which means that we don't recompute the 7 pefore all of the
weights Aw; are updated. Concretely, for a two-dimensional dataset, we would
write the update as:

Aw, =71 (y(i) - output(i))
Aw, =n (y(i) - output(i))x]m

Aw, =n (y(i) - output(i)) x;)

Before we implement the perceptron rule in Python, let us make a simple thought
experiment to illustrate how beautifully simple this learning rule really is. In the two
scenarios where the perceptron predicts the class label correctly, the weights remain
unchanged:

Aw; :n(l—l)xj(.l) =0

However, in the case of a wrong prediction, the weights are being pushed towards
the direction of the positive or negative target class:

Aw, =n(1==1)x, =n(2)x,

Aw, =n(-1-1)x, =n(-2)x;

To get a better intuition for the multiplicative factor xj(f) , let us go through another
simple example, where:

=1, =41, p=1

[22]

Chapter 2

Let's assume that x;) =0.5, and we misclassify this sample as -1. In this case, we

would increase the corresponding weight by 1 so that the net input x;') xw, would be
more positive the next time we encounter this sample, and thus be more likely to be
above the threshold of the unit step function to classify the sample as +1:

Aw, =(1--1)0.5=(2)0.5=1

The weight update is proportional to the value of x;[). For example, if we have

another sample x»‘}.") =2 that is incorrectly classified as -1, we'd push the decision
boundary by an even larger extent to classify this sample correctly the next time:

Aw, =(1--1)2=(2)2=4

It is important to note that the convergence of the perceptron is only guaranteed if
the two classes are linearly separable and the learning rate is sufficiently small. If the
two classes can't be separated by a linear decision boundary, we can set a maximum
number of passes over the training dataset (epochs) and/or a threshold for the
number of tolerated misclassifications —the perceptron would never stop updating
the weights otherwise:

'y F . -
Linearly separable [Not linearly separable Not linearly separable
] g 9
®e [+ i o 0" PR v .
wl e e ; * wl & T 5 B A
@al a * e _9% , » 2 +
= I = Q
ol + + e ©
J o = +
! Y b
%y %, %y

Downloading the example code

If you bought this book directly from Packt, you can download the

example code files from your account at http: //www.packtpub.
A~ com. If you purchased this book elsewhere, you can download all code

examples and datasets directly from https://github.com/rasbt/
python-machine-learning-book-2nd-edition.

[23]

Training Simple Machine Learning Algorithms for Classification

Now, before we jump into the implementation in the next section, let us summarize
what we just learned in a simple diagram that illustrates the general concept of the
perceptron:

Wesght update m

— | S

@ = Output

Bt input Threshoid
function funstion

The preceding diagram illustrates how the perceptron receives the inputs of a sample
x and combines them with the weights w to compute the net input. The net input is
then passed on to the threshold function, which generates a binary output -1 or +1—
the predicted class label of the sample. During the learning phase, this output is used
to calculate the error of the prediction and update the weights.

Implementing a perceptron learning
algorithm in Python

In the previous section, we learned how the Rosenblatt's perceptron rule works; let
us now go ahead and implement it in Python, and apply it to the Iris dataset that we
introduced in Chapter 1, Giving Computers the Ability to Learn from Data.

An object-oriented perceptron API

We will take an object-oriented approach to define the perceptron interface as a
Python class, which allows us to initialize new perceptron objects that can learn
from data via a £it method, and make predictions via a separate predict method.
As a convention, we append an underscore (_) to attributes that are not being created
upon the initialization of the object but by calling the object's other methods, for
example, self.w .

[24]

Chapter 2

If you are not yet familiar with Python's scientific libraries or need a
refresher, please see the following resources:
* NumPy: https://sebastianraschka.com/pdf/books/
% dlb/appendix_ f numpy-intro.pdf
~ * pandas: https://pandas.pydata.org/pandas-docs/
stable/10min.html
e Matplotlib: http://matplotlib.org/users/beginner.
html

The following is the implementation of a perceptron:

import numpy as np

class Perceptron (object) :
""nperceptron classifier.

Parameters
eta : float
Learning rate (between 0.0 and 1.0)
n_iter : int
Passes over the training dataset.
random state : int
Random number generator seed for random weight

initialization.

Attributes
w_ : ld-array
Weights after fitting.
errors_ : list
Number of misclassifications (updates) in each epoch.

wan
def init (self, eta=0.01, n iter=50, random state=1):
self.eta = eta
self.n iter = n _iter
self.random state = random state

def fit(self, X, y):
""rEit training data.

Parameters

[25]

Training Simple Machine Learning Algorithms for Classification

X : {array-like}, shape = [n_samples, n features]
Training vectors, where n samples is the number of
samples and
n_features is the number of features.

y : array-like, shape = [n samples]

Target values.

Returns

self : object

nnn

rgen = np.random.RandomState (self.random state)
self.w = rgen.normal (loc=0.0, scale=0.01,

size=1 + X.shapel[l])
self.errors = []

for _ in range(self.n iter):
errors = 0
for xi, target in zip(X, vy):
update = self.eta * (target - self.predict(xi))
self.w [1:] += update * xi
self.w_ [0] += update
errors += int (update != 0.0)
self.errors .append(errors)
return self

def net input (self, X):
""nCalculate net input"""
return np.dot (X, self.w [1:]) + self.w_[0]

def predict(self, X):
"mnReturn class label after unit step"""
return np.where (self.net input(X) >= 0.0, 1, -1)

Using this perceptron implementation, we can now initialize new perceptron
objects with a given learning rate eta and n_iter, which is the number of epochs
(passes over the training set). Via the £it method, we initialize the weights in
self.w_toavector R™", where m stands for the number of dimensions (features)
in the dataset, where we add 1 for the first element in this vector that represents the
bias unit. Remember that the first element in this vector, self.w_[0], represents the
so-called bias unit that we discussed earlier.

[26]

Chapter 2

Also notice that this vector contains small random numbers drawn from a
normal distribution with standard deviation 0. 01 via rgen.normal (1oc=0.0,
scale=0.01, size=1 + X.shape[1]), where rgen is a NumPy random number
generator that we seeded with a user-specified random seed so that we can
reproduce previous results if desired.

Now, the reason we don't initialize the weights to zero is that the learning rate
(eta) only has an effect on the classification outcome if the weights are initialized to
non-zero values. If all the weights are initialized to zero, the learning rate parameter
eta affects only the scale of the weight vector, not the direction. If you are familiar
with trigonometry, consider a vector vi=[1 2 3], where the angle between v1 and
avector v2=0.5x vl would be exactly zero, as demonstrated by the following code
snippet:

>>> vl = np.array([1, 2, 3])

>>> v2 = 0.5 * vl

>>> np.arccos (vl.dot (v2) / (np.linalg.norm(vl) *
L. np.linalg.norm(v2)))

0.0
Here, np . arccos is the trigonometric inverse cosine and np.1linalg.normis a
function that computes the length of a vector. (The reason why we have drawn the
random numbers from a random normal distribution—for example, instead from a
uniform distribution—and why we used a standard deviation of 0. 01 was arbitrary;
remember, we are just interested in small random values to avoid the properties of
all-zero vectors as discussed earlier.)

NumPy indexing for one-dimensional arrays works similarly to Python
> lists using the square-bracket ([1) notation. For two-dimensional arrays,
% the first indexer refers to the row number and the second indexer to the
’ column number. For example, we would use X [2, 3] to select the third
row and fourth column of a two-dimensional array X.

After the weights have been initialized, the £it method loops over all individual
samples in the training set and updates the weights according to the perceptron
learning rule that we discussed in the previous section. The class labels are predicted
by the predict method, which is called in the £it method to predict the class label
for the weight update, but predict can also be used to predict the class labels of
new data after we have fitted our model. Furthermore, we also collect the number

of misclassifications during each epoch in the self.errors_ list so that we can

later analyze how well our perceptron performed during the training. The np.dot
function that is used in the net _input method simply calculates the vector dot
product w’x.

[27]

Training Simple Machine Learning Algorithms for Classification

Instead of using NumPy to calculate the vector dot product between
two arrays a and b via a.dot (b) ornp.dot (a, b), we could also
perform the calculation in pure Python via sum([j * j for i, j

in zip(a, b)1).However, the advantage of using NumPy over
classic Python for loop structures is that its arithmetic operations are
vectorized. Vectorization means that an elemental arithmetic operation
is automatically applied to all elements in an array. By formulating

our arithmetic operations as a sequence of instructions on an array,
rather than performing a set of operations for each element at the time,
we can make better use of our modern CPU architectures with Single
Instruction, Multiple Data (SIMD) support. Furthermore, NumPy uses
highly optimized linear algebra libraries such as Basic Linear Algebra
Subprograms (BLAS) and Linear Algebra Package (LAPACK) that
have been written in C or Fortran. Lastly, NumPy also allows us to write
our code in a more compact and intuitive way using the basics of linear
algebra, such as vector and matrix dot products.

Training a perceptron model on the Iris
dataset

To test our perceptron implementation, we will load the two flower classes Setosa

and Versicolor from the Iris dataset. Although the perceptron rule is not restricted to
two dimensions, we will only consider the two features sepal length and petal length

for visualization purposes. Also, we only chose the two flower classes Setosa and

Versicolor for practical reasons. However, the perceptron algorithm can be extended

to multi-class classification — for example, the One-versus-All (OvA) technique.

OVA, or sometimes also called One-versus-Rest (OVR), is a
technique that allows us to extend a binary classifier to multi-class
problems. Using OvA, we can train one classifier per class, where
the particular class is treated as the positive class and the samples
from all other classes are considered negative classes. If we were
to classify a new data sample, we would use our n classifiers,
where n is the number of class labels, and assign the class label
with the highest confidence to the particular sample. In the case of
the perceptron, we would use OVA to choose the class label that is
associated with the largest absolute net input value.

[28]

Chapter 2

First, we will use the pandas library to load the Iris dataset directly from the UCI
Machine Learning Repository into a DataFrame object and print the last five lines via
the tail method to check the data was loaded correctly:

>>> import pandas as pd

>>> df = pd.read csv('https://archive.ics.uci.edu/ml/"'
'machine-learning-databases/iris/iris.data’',
c.. header=None)

>>> df.tail ()

o (1 |2 (3 |4
145 6.7 (3.0 (5.2 | 2.3 | Ins-virginica

146 | 6.3 |2.5(5.0|1.9 | Iris-virginica

147 | 6.5 (3.0 | 5.2 | 2.0 | Iis-virginica
148 | 6.2 | 3.4 |5.4 | 2.3 | Ins-virginica
148|5.9|3.0|5.1 [1.8 | Ins-virginica

You can find a copy of the Iris dataset (and all other datasets used in
this book) in the code bundle of this book, which you can use if you are
working offline or the UCI server at https: //archive.ics.uci.
edu/ml/machine-learning-databases/iris/iris.datais
temporarily unavailable. For instance, to load the Iris dataset from a
local directory, you can replace this line:

df = pd.read csv('https://archive.ics.uci.edu/ml/"’
'machine-learning-databases/iris/iris.data’,
header=None)
Replace it with this:
df = pd.read csv('your/local/path/to/iris.data"',

header=None)

Next, we extract the first 100 class labels that correspond to the 50 Iris-setosa and
50 1ris-versicolor flowers, and convert the class labels into the two integer class
labels 1 (versicolor) and -1 (setosa) that we assign to a vector y, where the values
method of a pandas DataFrame Yyields the corresponding NumPy representation.

[29]

Training Simple Machine Learning Algorithms for Classification

Similarly, we extract the first feature column (sepal length) and the third feature
column (petal length) of those 100 training samples and assign them to a feature
matrix x, which we can visualize via a two-dimensional scatter plot:

>>> import matplotlib.pyplot as plt
>>> import numpy as np

>>> # select setosa and versicolor
df.iloc[0:100, 4] .values
np.where(y == 'Iris-setosa', -1, 1)

>>> Yy

>>> y

>>> # extract sepal length and petal length
>>> X = df.iloc[0:100, [0, 2]].values

>>> # plot data

>>> plt.scatter(X[:50, 0], X[:50, 1],

.. color='red', marker='o', label='setosa')

>>> plt.scatter(X[50:100, 0], X[50:100, 1],

.. color='blue', marker='x', label='versicolor')
>>> plt.xlabel ('sepal length [cm]')

>>> plt.ylabel ('petal length [cm]')

>>> plt.legend(loc="upper left')

>>> plt.show()

After executing the preceding code example, we should now see the following
scatterplot:

54 ® setosa * ”
X 4
¥ wversicolor X x
¥ % _ xxX x
¥ % o X x X
= 4 - " g = E % ¥
= s * %
5 XX
E’ 3 - *
b
27 = .
P ' ® .
e ™
'.ll..l 1ot .
1{ ® .
a5 5.0 55 6.0 6.5 7.0
sepal length [cm)

[30]

Chapter 2

The preceding scatterplot shows the distribution of flower samples in the Iris dataset
along the two feature axes, petal length and sepal length. In this two-dimensional
feature subspace, we can see that a linear decision boundary should be sufficient

to separate Setosa from Versicolor flowers. Thus, a linear classifier such as the
perceptron should be able to classify the flowers in this dataset perfectly.

Now, it's time to train our perceptron algorithm on the Iris data subset that we

just extracted. Also, we will plot the misclassification error for each epoch to check
whether the algorithm converged and found a decision boundary that separates the
two Iris flower classes:

>>> ppn = Perceptron(eta=0.1, n iter=10)

>>> ppn.fit (X, y)

>>> plt.plot (range(l, len(ppn.errors) + 1),
e ppn.errors , marker='o')

>>> plt.xlabel ('Epochs"')

>>> plt.ylabel ('Number of updates')

>>> plt.show()

After executing the preceding code, we should see the plot of the misclassification
errors versus the number of epochs, as shown here:

3.0+

[5] [0
(=] un
L L

Humber of updates
—
un

1.0 4
0.5 -
0.0 - - - Leg -
2 A 6 8 10
Epochs

[31]

Training Simple Machine Learning Algorithms for Classification

As we can see in the preceding plot, our perceptron converged after the sixth
epoch and should now be able to classify the training samples perfectly. Let us
implement a small convenience function to visualize the decision boundaries for
two-dimensional datasets:

from matplotlib.colors import ListedColormap
def plot decision regions(X, y, classifier, resolution=0.02):

setup marker generator and color map

markers = ('s', 'x', 'o', '*, 'v')
colors = ('red', 'blue', 'lightgreen',6 'gray',6 'cyan')
cmap = ListedColormap (colors|[:len(np.unique(y))])

plot the decision surface

x1 min, x1 max = X[:, 0] .min() - 1, X[:, 0] .max() + 1
x2 min, x2 max = X[:, 1].min() - 1, X[:, 1] .max() + 1
xx1, xx2 = np.meshgrid(np.arange(xl min, x1 max, resolution),

np.arange (x2_min, x2 max, resolution))
Z = classifier.predict (np.array([xxl.ravel (), xx2.ravel()]).T)
Z = Z.reshape (xx1.shape)
plt.contourf (xx1, xx2, Z, alpha=0.3, cmap=cmap)
plt.xlim(xx1l.min(), xxl.max())
plt.ylim(xx2.min(), xx2.max())

plot class samples
for idx, cl in enumerate (np.unique(y)) :
plt.scatter (x=X[y == cl, 0],

y=X[y == cl, 11,
alpha=0.8,
c=colors [idx],
marker=markers [idx],
label=cl,
edgecolor="'black')

First, we define a number of colors and markers and create a colormap from

the list of colors via ListedColormap. Then, we determine the minimum and
maximum values for the two features and use those feature vectors to create a pair
of grid arrays xx1 and xx2 via the NumPy meshgrid function. Since we trained
our perceptron classifier on two feature dimensions, we need to flatten the grid
arrays and create a matrix that has the same number of columns as the Iris training
subset so that we can use the predict method to predict the class labels z of the
corresponding grid points.

[32]

Chapter 2

After reshaping the predicted class labels z into a grid with the same dimensions as
xx1 and xx2, we can now draw a contour plot via Matplotlib's contourf function,
which maps the different decision regions to different colors for each predicted class
in the grid array:

>>> plot decision regions (X, y, classifier=ppn)
>>> plt.xlabel('sepal length [cm]')

>>> plt.ylabel ('petal length [cm]')

>>> plt.legend(loc="upper left')

>>> plt.show()

After executing the preceding code example, we should now see a plot of the
decision regions, as shown in the following figure:

-

petal length [cm]
LFY]

2
1
u L
q 5 6 T
sepal length [cm]

As we can see in the plot, the perceptron learned a decision boundary that is able to
classify all flower samples in the Iris training subset perfectly.

Although the perceptron classified the two Iris flower classes perfectly,
convergence is one of the biggest problems of the perceptron. Frank
» Rosenblatt proved mathematically that the perceptron learning rule
converges if the two classes can be separated by a linear hyperplane.
However, if classes cannot be separated perfectly by such a linear
decision boundary, the weights will never stop updating unless we set
a maximum number of epochs.

[33]

Training Simple Machine Learning Algorithms for Classification

Adaptive linear neurons and the
convergence of learning

In this section, we will take a look at another type of single-layer neural network:
ADAptive LInear NEuron (Adaline). Adaline was published by Bernard Widrow
and his doctoral student Tedd Hoff, only a few years after Frank Rosenblatt's
perceptron algorithm, and can be considered as an improvement on the latter. (Refer
to An Adaptive "Adaline" Neuron Using Chemical "Memistors", Technical Report Number
1553-2, B. Widrow and others, Stanford Electron Labs, Stanford, CA, October 1960).

The Adaline algorithm is particularly interesting because it illustrates the key
concepts of defining and minimizing continuous cost functions. This lays the
groundwork for understanding more advanced machine learning algorithms for
classification, such as logistic regression, support vector machines, and regression
models, which we will discuss in future chapters.

The key difference between the Adaline rule (also known as the Widrow-Hoff rule)
and Rosenblatt's perceptron is that the weights are updated based on a linear
activation function rather than a unit step function like in the perceptron. In Adaline,
this linear activation function ¢(z) is simply the identity function of the net input,

so that:

¢(wa) =w'x

While the linear activation function is used for learning the weights, we still use

a threshold function to make the final prediction, which is similar to the unit step
function that we have seen earlier. The main differences between the perceptron and
Adaline algorithm are highlighted in the following figure:

[34]

Chapter 2

—s (st

> 7—,1“‘— b Perceptron

Wimghit upedlate

7}5}-@—- Output

Mt input Actreation Threshold
function function

functicn

Adaptive Linear MNeuron (Adaline)

The illustration shows that the Adaline algorithm compares the true class labels with
the linear activation function's continuous valued output to compute the model error
and update the weights. In contrast, the perceptron compares the true class labels to
the predicted class labels.

Minimizing cost functions with gradient
descent

One of the key ingredients of supervised machine learning algorithms is a defined
objective function that is to be optimized during the learning process. This objective
function is often a cost function that we want to minimize. In the case of Adaline,

we can define the cost function J to learn the weights as the Sum of Squared Errors
(SSE) between the calculated outcome and the true class label:

[35]

Training Simple Machine Learning Algorithms for Classification

The term % is just added for our convenience, which will make it easier to derive
the gradient, as we will see in the following paragraphs. The main advantage of this
continuous linear activation function, in contrast to the unit step function, is that
the cost function becomes differentiable. Another nice property of this cost function
is that it is convex; thus, we can use a simple yet powerful optimization algorithm
called gradient descent to find the weights that minimize our cost function to
classify the samples in the Iris dataset.

As illustrated in the following figure, we can describe the main idea behind
gradient descent as climbing down a hill until a local or global cost minimum is
reached. In each iteration, we take a step in the opposite direction of the gradient
where the step size is determined by the value of the learning rate, as well as the
slope of the gradient:

Initial s Gradient

L.

Jiw)

/ Global cost minimum

L)

*

Using gradient descent, we can now update the weights by taking a step in the
opposite direction of the gradient VJ(w) of our cost function J(w):

w=w+Aw

Where the weight change Aw is defined as the negative gradient multiplied by the
learning rate 7:

Aw = —nVJ(w)

To compute the gradient of the cost function, we need to compute the partial
derivative of the cost function with respect to each weight w;:

AT

[36]

Chapter 2

So that we can write the update of weight w; as:
oJ , , .
Aw, = —n—" = nZ(y(’) —¢(z('))x@
J J
ow; ;)
Since we update all weights simultaneously, our Adaline learning rule becomes:

w=w+Aw

For those who are familiar with calculus, the partial derivative of the SSE
cost function with respect to the jth weight can be obtained as follows:

0 o 1 ; N
a2l -o(=)

Although the Adaline learning rule looks identical to the perceptron rule, we should

note that the ¢(z(i)) with z) = w”x'" is a real number and not an integer class label.
Furthermore, the weight update is calculated based on all samples in the training set
(instead of updating the weights incrementally after each sample), which is why this
approach is also referred to as batch gradient descent.

[37]

Training Simple Machine Learning Algorithms for Classification

Implementing Adaline in Python

Since the perceptron rule and Adaline are very similar, we will take the perceptron
implementation that we defined earlier and change the £it method so that the
weights are updated by minimizing the cost function via gradient descent:

class AdalineGD (object) :
""nADAptive LInear NEuron classifier.

Parameters
eta : float
Learning rate (between 0.0 and 1.0)
n iter : int
Passes over the training dataset.
random state : int
Random number generator seed for random weight
initialization.

Attributes
w_ : ld-array
Weights after fitting.
cost : list
Sum-of-squares cost function value in each epoch.

Wi
def _ init_ (self, eta=0.01, n_iter=50, random_state=1):
self.eta = eta
self.n iter = n iter
self.random_state = random state

def fit(self, X, y):
"emo Fit training data.

Parameters

X : {array-like}, shape = [n_samples, n features]
Training vectors, where n samples is the number of
samples and
n_features is the number of features.

y : array-like, shape = [n samples]

[38]

Chapter 2

Target values.

Returns

self : object

nnn

rgen = np.random.RandomState (self.random state)
self.w = rgen.normal (loc=0.0, scale=0.01,

size=1 + X.shapel[l])
self.cost_ = []

for i in range(self.n iter):
net input = self.net input (X)
output = self.activation(net input)
errors = (y - output)
self.w [1:] += self.eta * X.T.dot (errors)

self.w [0] += self.eta * errors.sum()
cost = (errors**2).sum() / 2.0
self.cost .append(cost)

return self

def net input(self, X):
""nCalculate net input"""
return np.dot (X, self.w [1:]) + self.w [0]

def activation(self, X):
""r"Compute linear activation"""
return X

def predict(self, X):
"mnReturn class label after unit step"""
return np.where (self.activation(self.net input (X))
>= 0.0, 1, -1)

Instead of updating the weights after evaluating each individual training sample,

as in the perceptron, we calculate the gradient based on the whole training dataset
Vviaself.eta * errors.sum() for the bias unit (zero-weight) and via self.eta *
X.T.dot (errors) for the weights 1 to m where X.T.dot (errors) IS a matrix-vector
multiplication between our feature matrix and the error vector.

[39]

Training Simple Machine Learning Algorithms for Classification

Please note that the activation method has no effect in the code since it is simply
an identity function. Here, we added the activation function (computed via the
activation method) to illustrate how information flows through a single layer
neural network: features from the input data, net input, activation, and output. In
the next chapter, we will learn about a logistic regression classifier that uses a non-
identity, nonlinear activation function. We will see that a logistic regression model
is closely related to Adaline with the only difference being its activation and cost
function.

Now, similar to the previous perceptron implementation, we collect the cost values
inaself.cost_listto check whether the algorithm converged after training.

Performing a matrix-vector multiplication is similar to calculating a
vector dot-product where each row in the matrix is treated as a single
row vector. This vectorized approach represents a more compact notation
and results in a more efficient computation using NumPy. For example:
P

7
1 2 3 8 1x7+2x8+3%9 50
X = =
4 5 6 9 4xT7+5%x8+6x%9 122

In practice, it often requires some experimentation to find a good learning rate
for optimal convergence. So, let's choose two different learning rates, » =0.1 and
1 =0.0001, to start with and plot the cost functions versus the number of epochs to
see how well the Adaline implementation learns from the training data.

The learning rate 77 (eta), as well as the number of epochs (n_iter),
. are the so-called hyperparameters of the perceptron and Adaline learning
% algorithms. In Chapter 6, Learning Best Practices for Model Evaluation and
L Hyperparameter Tuning, we will take a look at different techniques to
automatically find the values of different hyperparameters that yield
optimal performance of the classification model.

Let us now plot the cost against the number of epochs for the two different
learning rates:

>>> fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))

>>> adal = AdalineGD(n_iter=10, eta=0.01).fit (X, y)
>>> ax[0] .plot (range(1l, len(adal.cost) + 1),

.. np.loglo0(adal.cost), marker='o')
>>> ax[0] .set_xlabel ('Epochs')

>>> ax[0] .set _ylabel ('log(Sum-squared-error) ')

[40]

Chapter 2

>>> ax[0] .set title('Adaline - Learning rate 0.01')

>>> ada2 = AdalineGD(n iter=10, eta=0.0001).fit(X, y)
>>> ax[1l] .plot (range(1l, len(ada2.cost) + 1),

ada2.cost , marker='o')

>>> ax[1l] .set xlabel ('Epochs')
>>> ax[1] .set_ylabel ('Sum-squared-error')
>>> ax[1l] .set title('Adaline - Learning rate 0.0001'")

>>> plt.show()

As we

can see in the resulting cost-function plots, we encountered two different

types of problem. The left chart shows what could happen if we choose a learning
rate that is too large. Instead of minimizing the cost function, the error becomes
larger in every epoch, because we overshoot the global minimum. On the other hand,
we can see that the cost decreases on the right plot, but the chosen learning rate
n=0.0001 is so small that the algorithm would require a very large number of epochs
to converge to the global cost minimum:

legi Sum-squaned-emor}

Adaline - Learning rate 0.01 Adaline - Learning rate 0.0001
30 4
50 4
Pl By
E 4R
20 E
3
154 ﬁ 46
[=3
£
10 a1
5 - 47 4
2 4 b B 10 2 4 B B 10
Epochs Epachs

[41]

Training Simple Machine Learning Algorithms for Classification

The following figure illustrates what might happen if we change the value of a
particular weight parameter to minimize the cost function J. The left subfigure
illustrates the case of a well-chosen learning rate, where the cost decreases gradually,
moving in the direction of the global minimum. The subfigure on the right, however,
illustrates what happens if we choose a learning rate that is too large—we overshoot
the global minimum:

Initial
wiaight

Jiw) {— Gradient Jiw)

Global cost minimum
"'Ir'||i|1|;w}

Improving gradient descent through feature
scaling

Many machine learning algorithms that we will encounter throughout this book
require some sort of feature scaling for optimal performance, which we will discuss
in more detail in Chapter 3, A Tour of Machine Learning Classifiers Using scikit-learn and
Chapter 4, Building Good Training Sets — Data Preprocessing.

Gradient descent is one of the many algorithms that benefit from feature scaling.

In this section, we will use a feature scaling method called standardization, which
gives our data the property of a standard normal distribution, which helps gradient
descent learning to converge more quickly. Standardization shifts the mean of each
feature so that it is centered at zero and each feature has a standard deviation of 1.
For instance, to standardize the jth feature, we can simply subtract the sample mean

u; from every training sample and divide it by its standard deviation o

xrl_ — xj _'uj
g,

Here, x; is a vector consisting of the jth feature values of all training samples n, and

this standardization technique is applied to each feature j in our dataset.

[42]

Chapter 2

One of the reasons why standardization helps with gradient descent learning is that
the optimizer has to go through fewer steps to find a good or optimal solution (the
global cost minimum), as illustrated in the following figure, where the subfigures
represent the cost surface as a function of two model weights in a two-dimensional
classification problem:

Zero mean and
. unit variance

v

B
=

W1 “ﬁ

Standardization can easily be achieved using the built-in NumPy methods mean
and std:

>>> X std = np.copy (X)
>>> X std[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std()
>>> X stdl[:,1] = (X[:,1] - X[:,1] .mean()) / X[:,1].std()

After standardization, we will train Adaline again and see that it now converges
after a small number of epochs using a learning rate 7 =0.01:

>>> ada = AdalineGD(n_iter=15, eta=0.01)
>>> ada.fit (X_std, y)

>>> plot decision regions (X std, y, classifier=ada)
>>> plt.title('Adaline - Gradient Descent')

>>> plt.xlabel ('sepal length [standardized]')

>>> plt.ylabel ('petal length [standardized]')

>>> plt.legend(loc="upper left')

>>> plt.tight layout ()

>>> plt.show()

>>> plt.plot(range(l, len(ada.cost) + 1), ada.cost , marker='o')
>>> plt.xlabel ('Epochs')

>>> plt.ylabel ('Sum-squared-error')

>>> plt.show()

[43]

Training Simple Machine Learning Algorithms for Classification

After executing this code, we should see a figure of the decision regions as well as a
plot of the declining cost, as shown in the following figure:

Adaline - Gradient Descent
0d
m \

11 = 1 \
- " - 4 \
B A 3 Pt i !
| 3 R H’ﬁxﬁxﬁx g
5 x gHRN =x ¥
H] i ™
]] o e ———
ki o e —— B
il P 3
b3 o E M
&]]
3 s2He llll. i
% (L L
3 L . o .

—
—h—
-z .
=2 =1 a 1 2 a 2 B L n 10 12 14
sepal length [standardired] Epacrn

As we can see in the plots, Adaline has now converged after training on the
standardized features using a learning rate 7 =0.01. However, note that the SSE
remains non-zero even though all samples were classified correctly.

Large-scale machine learning and stochastic
gradient descent

In the previous section, we learned how to minimize a cost function by taking a step
in the opposite direction of a cost gradient that is calculated from the whole training
set; this is why this approach is sometimes also referred to as batch gradient descent.
Now imagine we have a very large dataset with millions of data points, which is not
uncommon in many machine learning applications. Running batch gradient descent
can be computationally quite costly in such scenarios since we need to reevaluate the
whole training dataset each time we take one step towards the global minimum.

A popular alternative to the batch gradient descent algorithm is stochastic gradient
descent, sometimes also called iterative or online gradient descent. Instead of
updating the weights based on the sum of the accumulated errors over all

samples x:

Aw = ’72,-(Yl ¢(Z(f>))x<f)

[44]

Chapter 2

We update the weights incrementally for each training sample:
,7() ¢(z<f)))x(f)

Although stochastic gradient descent can be considered as an approximation of
gradient descent, it typically reaches convergence much faster because of the more
frequent weight updates. Since each gradient is calculated based on a single training
example, the error surface is noisier than in gradient descent, which can also have
the advantage that stochastic gradient descent can escape shallow local minima
more readily if we are working with nonlinear cost functions, as we will see later in
Chapter 12, Implementing a Multilayer Artificial Neural Network from Scratch. To obtain
satisfying results via stochastic gradient descent, it is important to present it training
data in a random order; also, we want to shuffle the training set for every epoch to
prevent cycles.

In stochastic gradient descent implementations, the fixed learning rate 77
is often replaced by an adaptive learning rate that decreases over time, for
example:

G

[number of iterations] +c,

Where ¢, and ¢, are constants. We shall note that stochastic gradient
descent does not reach the global minimum, but an area very close to it.
And using an adaptive learning rate, we can achieve further annealing to
the cost minimum.

Another advantage of stochastic gradient descent is that we can use it for online
learning. In online learning, our model is trained on the fly as new training data
arrives. This is especially useful if we are accumulating large amounts of data, for
example, customer data in web applications. Using online learning, the system can
immediately adapt to changes and the training data can be discarded after updating
the model if storage space is an issue.

[45]

Training Simple Machine Learning Algorithms for Classification

A compromise between batch gradient descent and stochastic
gradient descent is so-called mini-batch learning. Mini-batch
learning can be understood as applying batch gradient descent to
_ smaller subsets of the training data, for example, 32 samples at a
% time. The advantage over batch gradient descent is that convergence
L is reached faster via mini-batches because of the more frequent

weight updates. Furthermore, mini-batch learning allows us to
replace the for loop over the training samples in stochastic gradient
descent with vectorized operations, which can further improve the
computational efficiency of our learning algorithm.

Since we already implemented the Adaline learning rule using gradient descent, we
only need to make a few adjustments to modify the learning algorithm to update
the weights via stochastic gradient descent. Inside the £it method, we will now
update the weights after each training sample. Furthermore, we will implement

an additional partial fit method, which does not reinitialize the weights, for
online learning. In order to check whether our algorithm converged after training,
we will calculate the cost as the average cost of the training samples in each epoch.
Furthermore, we will add an option to shuffle the training data before each epoch
to avoid repetitive cycles when we are optimizing the cost function; via the random
state parameter, we allow the specification of a random seed for reproducibility:

class AdalineSGD (object) :
"""ADAptive LInear NEuron classifier.

Parameters

eta : float
Learning rate (between 0.0 and 1.0)

n_iter : int
Passes over the training dataset.

shuffle : bool (default: True)
Shuffles training data every epoch if True
to prevent cycles.

random state : int
Random number generator seed for random weight
initialization.

Attributes
w_ : ld-array

Weights after fitting.
cost : list

[46]

Chapter 2

Sum-of-squares cost function value averaged over all

training samples in each epoch.

nnn

def init (self, eta=0.01, n iter=10,

shuffle=True, random state=None) :

self.eta = eta

self.n iter = n iter

self.w _initialized = False
self.shuffle = shuffle
self.random_state = random state

def fit(self, X, y):
"eno RFit training data.

Parameters

X : {array-like}, shape = [n_samples, n features]
Training vectors, where n samples is the number

of samples and

n_features is the number of features.
y : array-like, shape = [n samples]

Target values.

Returns

self : object

nnn

self. initialize weights (X.shape[1])
self.cost = []
for i in range(self.n iter):
if self.shuffle:
X, y = self. shuffle(X, y)
cost = []
for xi, target in zip (X, y):

cost.append(self. update weights(xi, target))

avg cost = sum(cost) / len(y)
self.cost .append(avg cost)
return self

def partial fit(self, X, y):

""rEFit training data without reinitializing the weights"""

[47]

Training Simple Machine Learning Algorithms for Classification

if not self.w_initialized:

self. initialize weights (X.shapel[1l])
if y.ravel() .shape[0] > 1:

for xi, target in zip(X, vy):

self. update weights(xi, target)

else:

self. update weights (X, y)
return self

def shuffle(self, X, y):
"wnshuffle training data"""
r = self.rgen.permutation(len(y))
return X[r], ylr]

def initialize weights(self, m):
""nITnitialize weights to small random numbers"""
self.rgen = np.random.RandomState (self.random state)
self.w = self.rgen.normal (loc=0.0, scale=0.01,
size=1 + m)
self.w_initialized = True

def update weights(self, xi, target):
"""Apply Adaline learning rule to update the weightg"""
output = self.activation(self.net input (xi))
error = (target - output)
self.w [1:] += self.eta * xi.dot (error)
self.w_[0] += self.eta * error
cost = 0.5 * error**2
return cost

def net input (self, X):
""nCalculate net input"""
return np.dot (X, self.w [1:]) + self.w [0]

def activation(self, X):
""nCompute linear activation"""
return X

def predict(self, X):
""nReturn class label after unit step"""
return np.where (self.activation(self.net_input (X))
>= 0.0, 1, -1)

[48]

Chapter 2
The shuffle method that we are now using in the AdalinesGp classifier works
as follows: via the permutation function in np. random, we generate a random

sequence of unique numbers in the range 0 to 100. Those numbers can then be used
as indices to shuffle our feature matrix and class label vector.

We can then use the £it method to train the Adalinescp classifier and use our
plot decision regions to plot our training results:

>>> ada = AdalineSGD(n_ iter=15,

eta=0.01,
>>> ada.fit (X_std, y)

random state=1)

>>> plot decision regions (X std, vy,

classifier=ada)
>>> plt.

title('Adaline - Stochastic Gradient Descent')
>>> plt.xlabel ('sepal length [standardized]')

>>> plt.ylabel ('petal length [standardized]')

>>> plt.
>>> plt.
>>> plt.
>>> plt.

legend(loc="upper left')
show ()

plot (range (1, len(ada.cost)
xlabel ('Epochs')

+ 1), ada.cost , marker='o')

>>> plt.ylabel ('Average Cost')
>>> plt.show()

The two plots that we obtain from executing the preceding code example are shown

in the following figure:

Adaling - Stochastic Gradient Descent
- sae] ¢
T
_ =R . ars] |
E EN - \
g "
£ 14 Kukit aﬂnﬁxﬁ 1 omad |
3 x gH¥N =x % \
.3
H wl = e — O oo \
2 5 X ————_— } 1
= e 5 000 1
14 . 2 \
3 m| I aors
3 e wefly B .
™
o080 .
il
2 T
- . ; aors B
& L b 1 ¥ 3 2 H H u T 12
sepal kength [standardized] Epachs

As we can see, the average cost goes down pretty quickly, and the final decision
boundary after 15 epochs looks similar to the batch gradient descent Adaline. If
we want to update our model, for example, in an online learning scenario with
streaming data, we could simply call the partial fit method on individual

samples—for instance ada.partial fit (X _stdlo0,

21, ylol).

[49]

Training Simple Machine Learning Algorithms for Classification

Summary

In this chapter, we gained a good understanding of the basic concepts of linear
classifiers for supervised learning. After we implemented a perceptron, we saw how
we can train adaptive linear neurons efficiently via a vectorized implementation of
gradient descent and online learning via stochastic gradient descent.

Now that we have seen how to implement simple classifiers in Python, we are
ready to move on to the next chapter, where we will use the Python scikit-learn
machine learning library to get access to more advanced and powerful machine
learning classifiers that are commonly used in academia as well as in industry. The
object-oriented approach that we used to implement the perceptron and Adaline
algorithms will help with understanding the scikit-learn API, which is implemented
based on the same core concepts that we used in this chapter: the fit and predict
methods. Based on these core concepts, we will learn about logistic regression

for modeling class probabilities and support vector machines for working with
nonlinear decision boundaries. In addition, we will introduce a different class

of supervised learning algorithms, tree-based algorithms, which are commonly
combined into robust ensemble classifiers.

[50]

A Tour of Machine Learning
Classifiers Using scikit-learn

In this chapter, we will take a tour through a selection of popular and powerful
machine learning algorithms that are commonly used in academia as well as in
industry. While learning about the differences between several supervised learning
algorithms for classification, we will also develop an intuitive appreciation of their
individual strengths and weaknesses. In addition, we will take our first step with the
scikit-learn library, which offers a user-friendly interface for using those algorithms
efficiently and productively.

The topics that we will learn about throughout this chapter are as follows:
* Introduction to robust and popular algorithms for classification, such as
logistic regression, support vector machines, and decision trees

e Examples and explanations using the scikit-learn machine learning library,
which provides a wide variety of machine learning algorithms via a user-
friendly Python API

e Discussions about the strengths and weaknesses of classifiers with linear and
non-linear decision boundaries

[51]

A Tour of Machine Learning Classifiers Using scikit-learn

Choosing a classification algorithm

Choosing an appropriate classification algorithm for a particular problem task
requires practice; each algorithm has its own quirks and is based on certain
assumptions. To restate the No Free Lunch theorem by David H. Wolpert, no single
classifier works best across all possible scenarios (The Lack of A Priori Distinctions
Between Learning Algorithms, Wolpert and David H, Neural Computation 8.7 (1996):
1341-1390). In practice, it is always recommended that you compare the performance
of at least a handful of different learning algorithms to select the best model for

the particular problem; these may differ in the number of features or samples, the
amount of noise in a dataset, and whether the classes are linearly separable or not.

Eventually, the performance of a classifier —computational performance as well
as predictive power—depends heavily on the underlying data that is available
for learning. The five main steps that are involved in training a machine learning
algorithm can be summarized as follows:

Selecting features and collecting training samples.

Choosing a performance metric.

Choosing a classifier and optimization algorithm.

Evaluating the performance of the model.

o 0w

Tuning the algorithm.

Since the approach of this book is to build machine learning knowledge step by step,
we will mainly focus on the main concepts of the different algorithms in this chapter
and revisit topics such as feature selection and preprocessing, performance metrics,
and hyperparameter tuning for more detailed discussions later in this book.

First steps with scikit-learn — training a
perceptron

In Chapter 2, Training Simple Machine Learning Algorithms for Classification,

you learned about two related learning algorithms for classification, the

perceptron rule and Adaline, which we implemented in Python by ourselves.

Now we will take a look at the scikit-learn API, which combines a user-friendly
interface with a highly optimized implementation of several classification algorithms.
The scikit-learn library offers not only a large variety of learning algorithms, but

also many convenient functions to preprocess data and to fine-tune and evaluate our
models. We will discuss this in more detail, together with the underlying concepts, in
Chapter 4, Building Good Training Sets — Data Preprocessing, and Chapter 5, Compressing
Data via Dimensionality Reduction.

[52]

Chapter 3

To get started with the scikit-learn library, we will train a perceptron model

similar to the one that we implemented in Chapter 2, Training Simple Machine Learning
Algorithms for Classification. For simplicity, we will use the already familiar Iris
dataset throughout the following sections. Conveniently, the Iris dataset is already
available via scikit-learn, since it is a simple yet popular dataset that is frequently
used for testing and experimenting with algorithms. We will only use two features
from the Iris dataset for visualization purposes.

We will assign the petal length and petal width of the 150 flower samples to the
feature matrix x and the corresponding class labels of the flower species to the
vector y:

>>> from sklearn import datasets
>>> import numpy as np

>>> iris = datasets.load iris()

>>> X = iris.datal:, [2, 3]]

>>> y = iris.target

>>> print ('Class labels:', np.unique(y))

Class labels: [0 1 2]

The np.unique (y) function returned the three unique class labels stored

in iris.target, and as we see, the Iris flower class names Iris-setosa,
Iris-versicolor, and Iris-virginica are already stored as integers (here: o, 1, 2).
Although many scikit-learn functions and class methods also work with class labels
in string format, using integer labels is a recommended approach to avoid technical
glitches and improve computational performance due to a smaller memory footprint;
furthermore, encoding class labels as integers is a common convention among most
machine learning libraries.

To evaluate how well a trained model performs on unseen data, we will further split
the dataset into separate training and test datasets. Later in Chapter 6, Learning Best
Practices for Model Evaluation and Hyperparameter Tuning, we will discuss the best
practices around model evaluation in more detail:

>>> from sklearn.model selection import train test split
>>> X train, X test, y train, y test = train test split(
X, y, test size=0.3, random state=1, stratify=y)

Using the train test split function from scikit-learn's model selection module,
we randomly split the x and y arrays into 30 percent test data (45 samples) and 70
percent training data (105 samples).

[53]

A Tour of Machine Learning Classifiers Using scikit-learn

Note that the train_test_split function already shuffles the training sets
internally before splitting; otherwise, all class o0 and class 1 samples would have
ended up in the training set, and the test set would consist of 45 samples from

class 2. Via the random_state parameter, we provided a fixed random seed
(random_state=1) for the internal pseudo-random number generator that is used
for shuffling the datasets prior to splitting. Using such a fixed random_state ensures
that our results are reproducible.

Lastly, we took advantage of the built-in support for stratification via stratify=y. In
this context, stratification means that the train test split method returns training
and test subsets that have the same proportions of class labels as the input dataset.
We can use NumPYy's bincount function, which counts the number of occurrences of
each value in an array, to verify that this is indeed the case:

>>> print ('Labels counts in y:', np.bincount (y))
Labels counts in y: [50 50 50]
>>> print ('Labels counts in y train:', np.bincount (y_train))

Labels counts in y train: [35 35 35]
>>> print ('Labels counts in y test:', np.bincount(y test))
Labels counts in y test: [15 15 15]

Many machine learning and optimization algorithms also require feature scaling
for optimal performance, as we remember from the gradient descent example in
Chapter 2, Training Simple Machine Learning Algorithms for Classification. Here, we

will standardize the features using the standardscaler class from scikit-learn's

preprocessing module:

>>> from sklearn.preprocessing import StandardScaler
>>> sc = StandardScaler ()

>>> sc.fit (X_train)

>>> X train std = sc.transform(X train)

>>> X test std = sc.transform(X test)

Using the preceding code, we loaded the standardscaler class from the
preprocessing module and initialized a new standardscaler object that we
assigned to the sc variable. Using the £it method, standardScaler estimated the
parameters y (sample mean) and ¢ (standard deviation) for each feature dimension
from the training data. By calling the transform method, we then standardized the
training data using those estimated parameters x# and o . Note that we used the
same scaling parameters to standardize the test set so that both the values in the
training and test dataset are comparable to each other.

[54]

Chapter 3

Having standardized the training data, we can now train a perceptron model. Most
algorithms in scikit-learn already support multiclass classification by default via the
One-versus-Rest (OvR) method, which allows us to feed the three flower classes to
the perceptron all at once. The code is as follows:

>>> from sklearn.linear model import Perceptron

>>> ppn = Perceptron(n iter=40, eta0=0.1, random state=1)
>>> ppn.fit (X train std, y train)

The scikit-learn interface reminds us of our perceptron implementation in

Chapter 2, Training Simple Machine Learning Algorithms for Classification: after

loading the Perceptron class from the 1inear model module, we initialized a

new perceptron object and trained the model via the £it method. Here, the model
parameter etao is equivalent to the learning rate eta that we used in our own
perceptron implementation, and the n_iter parameter defines the number of epochs
(passes over the training set).

As we remember from Chapter 2, Training Simple Machine Learning Algorithms for
Classification, finding an appropriate learning rate requires some experimentation.

If the learning rate is too large, the algorithm will overshoot the global cost
minimum. If the learning rate is too small, the algorithm requires more epochs until
convergence, which can make the learning slow—especially for large datasets. Also,
we used the random_state parameter to ensure the reproducibility of the initial
shuffling of the training dataset after each epoch.

Having trained a model in scikit-learn, we can make predictions via the predict
method, just like in our own perceptron implementation in Chapter 2, Training Simple
Machine Learning Algorithms for Classification. The code is as follows:

>>> y pred = ppn.predict (X test std

)
>>> print ('Misclassified samples: %d' % (y test != y pred).sum())
Misclassified samples: 3

Executing the code, we see that the perceptron misclassifies three out of the 45 flower
samples. Thus, the misclassification error on the test dataset is approximately 0.067
or 6.7 percent (3/45~0.067),

Instead of the misclassification error, many machine learning
% practitioners report the classification accuracy of a model,
VS which is simply calculated as follows:

I-error = 0.933 or 93.3 percent.

[55]

A Tour of Machine Learning Classifiers Using scikit-learn

The scikit-learn library also implements a large variety of different performance
metrics that are available via the metrics module. For example, we can calculate
the classification accuracy of the perceptron on the test set as follows:

>>> from sklearn.metrics import accuracy score
°

>>> print ('Accuracy: %.2f' % accuracy score(y_test, y pred))
Accuracy: 0.93

Here, y_test are the true class labels and y_pred are the class labels that we
predicted previously. Alternatively, each classifier in scikit-learn has a score
method, which computes a classifier's prediction accuracy by combining the predict
call with accuracy score as shown here:

o o

>>> print ('Accuracy: %.2f' % ppn.score(X test std, y test))
Accuracy: 0.93

Note that we evaluate the performance of our models based on the
. testsetin this chapter. In Chapter 5, Compressing Data via Dimensionality
% Reduction, you will learn about useful techniques, including graphical
S analysis such as learning curves, to detect and prevent overfitting.
Overfitting means that the model captures the patterns in the training
data well, but fails to generalize well to unseen data.

Finally, we can use our plot decision regions function from Chapter 2, Training
Simple Machine Learning Algorithms for Classification, to plot the decision regions of
our newly trained perceptron model and visualize how well it separates the different
flower samples. However, let's add a small modification to highlight the samples
from the test dataset via small circles:

from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt

def plot decision regions (X, y, classifier, test idx=None,
resolution=0.02) :

setup marker generator and color map

markers = ('s', 'x', 'o', M, 'v')

colors = ('red', 'blue', 'lightgreen', 'gray',6 'cyan')
cmap = ListedColormap (colors[:len(np.unique(y))])

plot the decision surface
x1 min, x1 max = X[:, 0] .min() - 1, X[:, 0] .max() + 1
x2 min, x2 max = X[:, 1] .min() - 1, X[:, 1] .max() + 1

[56]

Chapter 3

xx1, xx2 = np.meshgrid(np.arange(xl min, x1 max, resolution),
np.arange (x2_min, x2 max, resolution))

Z = classifier.predict (np.array([xxl.ravel (), xx2.ravel()]).T)

Z = Z.reshape (xx1.shape)

plt.contourf (xx1, xx2, Z, alpha=0.3, cmap=cmap)

plt.xlim(xxl.min(), xxl.max())

plt.ylim(xx2.min(), xx2.max())

for idx, cl in enumerate (np.unique(y)) :
plt.scatter (x=X[y == cl, 0], y=X[y == cl, 11,
alpha=0.8, c=colors[idx],
marker=markers [idx], label=cl,
edgecolor="'black')

highlight test samples
if test idx:
plot all samples

X test, y test = X[test idx, :], yltest idx]
plt.scatter (X test[:, 0], X test[:, 1],
c='"', edgecolor='black', alpha=1.0,

linewidth=1, marker='o',
=100, label='test set')

With the slight modification that we made to the plot decision regions function,
we can now specify the indices of the samples that we want to mark on the resulting
plots. The code is as follows:

>>>

>>>

>>>

>>>

>>>

>>>

>>>

X combined std = np.vstack((X train std, X test std))
y combined = np.hstack((y train, y test))
plot decision regions (X=X combined std,

y=y_combined,

classifier=ppn,

test idx=range (105, 150))
plt.xlabel ('petal length [standardized]')
plt.ylabel ('petal width [standardized]')
plt.legend(loc="'upper left')
plt.show ()

[57]

A Tour of Machine Learning Classifiers Using scikit-learn

As we can see in the resulting plot, the three flower classes cannot be perfectly
separated by a linear decision boundary:

m 0
3 - ® 1
o 2
E () testset
B 19
[
=
| =
B
3 o
5
=
=
B 1
(=5
= 1
-2 1 0 1 2
petal length [standardized]

Remember from our discussion in Chapter 2, Training Simple Machine Learning
Algorithms for Classification, that the perceptron algorithm never converges on
datasets that aren't perfectly linearly separable, which is why the use of the
perceptron algorithm is typically not recommended in practice. In the following
sections, we will look at more powerful linear classifiers that converge to a cost
minimum even if the classes are not perfectly linearly separable.

The Perceptron, as well as other scikit-learn functions and classes, often
, have additional parameters that we omit for clarity. You can read more
about those parameters using the help function in Python (for instance,
’ help (Perceptron)) or by going through the excellent scikit-learn
online documentation at http://scikit-learn.org/stable/.

[58]

Chapter 3

Modeling class probabilities via logistic
regression

Although the perceptron rule offers a nice and easygoing introduction to machine
learning algorithms for classification, its biggest disadvantage is that it never
converges if the classes are not perfectly linearly separable. The classification task
in the previous section would be an example of such a scenario. Intuitively, we can
think of the reason as the weights are continuously being updated since there is
always at least one misclassified sample present in each epoch. Of course, you can
change the learning rate and increase the number of epochs, but be warned that the
perceptron will never converge on this dataset. To make better use of our time, we
will now take a look at another simple yet more powerful algorithm for linear and
binary classification problems: logistic regression. Note that, in spite of its name,
logistic regression is a model for classification, not regression.

Logistic regression intuition and conditional
probabilities

Logistic regression is a classification model that is very easy to implement but
performs very well on linearly separable classes. It is one of the most widely used
algorithms for classification in industry. Similar to the perceptron and Adaline, the
logistic regression model in this chapter is also a linear model for binary classification
that can be extended to multiclass classification, for example, via the OvR technique.

To explain the idea behind logistic regression as a probabilistic model, let's first
introduce the odds ratio: the odds in favor of a particular event. The odds ratio can

P
(1-p)
term positive event does not necessarily mean good, but refers to the event that we
want to predict, for example, the probability that a patient has a certain disease; we
can think of the positive event as class label y=1. We can then further define the
logit function, which is simply the logarithm of the odds ratio (log-odds):

be written as

where p stands for the probability of the positive event. The

logit(p) =log (lfp)

[59]

A Tour of Machine Learning Classifiers Using scikit-learn

Note that log refers to the natural logarithm, as it is the common convention in
computer science. The logit function takes as input values in the range 0 to 1 and
transforms them to values over the entire real-number range, which we can use to
express a linear relationship between feature values and the log-odds:

Iogit(p(y =1 x)) = WXy + WX+ W, X, = iw,.xi =w'x
=0

Here, p(y=1|x) is the conditional probability that a particular sample belongs to
class 1 given its features x.

Now, we are actually interested in predicting the probability that a certain sample
belongs to a particular class, which is the inverse form of the 10git function. It is
also called logistic sigmoid function, sometimes simply abbreviated to sigmoid
function due to its characteristic S-shape:

1
l1+e~

4(z)

Here z is the net input, the linear combination of weights and sample features,
Z=w X =wWx, + WX+ W, X,, |

_Note that similar to the convention we used in Chapter 2, Training
Simple Machine Learning Algorithms for Classification, w, refers to
s the bias unit, and is an additional input value that we provide x,,
which is set equal to 1.

Now let us simply plot the sigmoid function for some values in the range -7 to 7 to
see how it looks:

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> def sigmoid(z) :
return 1.0 / (1.0 + np.exp(-z))
>>> z = np.arange(-7, 7, 0.1)
>>> phi z = sigmoid(z)
>>> plt.plot(z, phi z)
>>> plt.axvline (0.0, color='k")
>>> plt.ylim(-0.1, 1.1)
>>> plt.xlabel('z")

[60]

Chapter 3

>>>

>>>

>>>

>>>

>>>

>>>

plt.ylabel ('$\phi (z)s$')

vy axis ticks and gridline
plt.yticks([0.0, 0.5, 1.0])
ax = plt.gca()
ax.yaxis.grid (True)
plt.show ()

As a result of executing the previous code example, we should now see the S-shaped
(sigmoidal) curve:

We can see that ¢(z) approaches 1 if z goes towards infinity (z —) since e~

1.0 1

1%
[=}
in

0.0 4

=5 =4 -2

becomes very small for large values of z. Similarly, ¢(z) goes towards 0 for z — —o
as a result of an increasingly large denominator. Thus, we conclude that this sigmoid
function takes real number values as input and transforms them into values in the
range [0, 1] with an intercept at ¢(z)=0.5.

[61]

A Tour of Machine Learning Classifiers Using scikit-learn

To build some intuition for the logistic regression model, we can relate it to
Chapter 2, Training Simple Machine Learning Algorithms for Classification. In Adaline,
we used the identity function ¢(z) =z as the activation function. In logistic
regression, this activation function simply becomes the sigmoid function that we

defined earlier. The difference between Adaline and logistic regression is illustrated
in the following figure:

@ Predicted class label

et input Linear Thireshalbd
fumction activation function
function

Adaptive Linear Neuron (Adaline)

(f' ":' :-@—- Predicted class label
Wi

Sigmoid Threshold

h = functicn activation | funcion
T w funetion |
Q('“ Logistic Regression | Contoml probailey hra
i £ b sample befongs to class 1 given it
L veciar X

The output of the sigmoid function is then interpreted as the probability of a
particular sample belonging to class 1,#(z) = P(y=1| x;w), given its features x
parameterized by the weights w. For example, if we compute ¢(z)=0.8 for a
particular flower sample, it means that the chance that this sample is an Iris-
versicolor flower is 80 percent. Therefore, the probability that this flower is an
Iris-setosa flower can be calculated as P(y=0|x;w)=1-P(y=1|x;w)=0.2 or 20

percent. The predicted probability can then simply be converted into a binary
outcome via a threshold function:

) {1 if$(z)=0.5

0 otherwise

[62]

Chapter 3

If we look at the preceding plot of the sigmoid function, this is equivalent to
the following:

. {1 if z20.0

0 otherwise

In fact, there are many applications where we are not only interested in the
predicted class labels, but where the estimation of the class-membership probability
is particularly useful (the output of the sigmoid function prior to applying the
threshold function). Logistic regression is used in weather forecasting, for example,
not only to predict if it will rain on a particular day but also to report the chance of
rain. Similarly, logistic regression can be used to predict the chance that a patient has
a particular disease given certain symptoms, which is why logistic regression enjoys
great popularity in the field of medicine.

Learning the weights of the logistic cost
function

You learned how we could use the logistic regression model to predict probabilities
and class labels; now, let us briefly talk about how we fit the parameters of the
model, for instance the weights w. In the previous chapter, we defined the
sum-squared-error cost function as follows:

We minimized this function in order to learn the weights w for our Adaline
classification model. To explain how we can derive the cost function for logistic
regression, let's first define the likelihood L that we want to maximize when we build
a logistic regression model, assuming that the individual samples in our dataset are
independent of one another. The formula is as follows:

n (1) (i)

10)= (1) =TT)T 100

i=1

[63]

A Tour of Machine Learning Classifiers Using scikit-learn

In practice, it is easier to maximize the (natural) log of this equation, which is called
the log-likelihood function:

3

H(w)=logL(w)= [y“')1og(¢(z<”>))+(1—y<">)1og(1—¢(z<">))]

Firstly, applying the log function reduces the potential for numerical underflow,
which can occur if the likelihoods are very small. Secondly, we can convert the
product of factors into a summation of factors, which makes it easier to obtain the
derivative of this function via the addition trick, as you may remember from calculus.

Now we could use an optimization algorithm such as gradient ascent to maximize
this log-likelihood function. Alternatively, let's rewrite the log-likelihood as a cost
function J that can be minimized using gradient descent as in Chapter 2, Training
Simple Machine Learning Algorithms for Classification:

n

J(w) =3 | ~r"10g(4(="))~(1-3")1og(1-(=") |

i=1

To get a better grasp of this cost function, let us take a look at the cost that we
calculate for one single-sample training instance:

J(¢(z2), yiw)=-ylog(¢(2))-(1-y)log(1-4(2))

Looking at the equation, we can see that the first term becomes zero if y =0, and the
second term becomes zero if y=1:

~log(¢(z)) ify=1

"("“2)’”):{—log(l—qﬁ(z)) y3=0

Let's write a short code snippet to create a plot that illustrates the cost of classifying a
single-sample instance for different values of ¢(z):

>>> def cost 1(z):

return - np.log(sigmoid(z))
>>> def cost 0(z):

return - np.log(l - sigmoid(z))
>>> z = np.arange(-10, 10, 0.1)
>>> phi z = sigmoid(z)

[64]

Chapter 3

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

cl =
plt.
cO0 =
plt
plt
plt
plt
plt
plt.
plt.

[cost 1(x) for x in z]

plot (phi z, cl, label='J(w) if y=1"')

[cost 0(x) for x in z]
.plot (phi z, c0, linestyle='--', label='J(w) if y=0")
.ylim (0.0, 5.1)

.xlim ([0, 1])
.xlabel ('ϕS(z) ")
.ylabel ('J(w) ")

legend(loc="best"')
show ()

The resulting plot shows the sigmoid activation on the x axis, in the range o to 1
(the inputs to the sigmoid function were z values in the range -10 to 10) and the
associated logistic cost on the y-axis:

Jiw)

— Jiw) ify=1 i
=== |(w)if y=0 H

[65]

A Tour of Machine Learning Classifiers Using scikit-learn

We can see that the cost approaches 0 (continuous line) if we correctly predict that
a sample belongs to class 1. Similarly, we can see on the y-axis that the cost also
approaches 0 if we correctly predict y =0 (dashed line). However, if the prediction
is wrong, the cost goes towards infinity. The main point is that we penalize wrong
predictions with an increasingly larger cost.

Converting an Adaline implementation into an
algorithm for logistic regression

If we were to implement logistic regression ourselves, we could simply substitute
the cost function J in our Adaline implementation from Chapter 2, Training Simple
Machine Learning Algorithms for Classification with the new cost function:

0= (o)) =)

We use this to compute the cost of classifying all training samples per epoch. Also,
we need to swap the linear activation function with the sigmoid activation and
change the threshold function to return class labels 0 and 1 instead of -1 and 1. If we
make those three changes to the Adaline code, we would end up with a working
logistic regression implementation, as shown here:

class LogisticRegressionGD (object) :
""n"Togistic Regression Classifier using gradient descent.

Parameters
eta : float
Learning rate (between 0.0 and 1.0)
n_iter : int
Passes over the training dataset.
random state : int
Random number generator seed for random weight
initialization.

Attributes
w_ : ld-array

Weights after fitting.
cost : list

[66]

Chapter 3

Sum-of-squares cost function value in each epoch.

nnn

def

def

__init (self, eta=0.05, n iter=100, random state=1):

self.eta = eta
self.n iter = n iter
self.random state = random state

fit(self, X, y):
""roFit training data.

Parameters

X : {array-like}, shape = [n_samples, n features]
Training vectors, where n samples is the number of

samples and

n_features is the number of features.

y : array-like, shape = [n samples]
Target values.

Returns

self : object

rgen = np.random.RandomState (self.random state)
self.w = rgen.normal (loc=0.0, scale=0.01,
size=1 + X.shapell])

self.cost_ = []

for i in range(self.n iter):
net input = self.net input (X)

output = self.activation(net input)

errors = (y - output)

self.w [1:] += self.eta * X.T.dot (errors)
self.w_[0] += self.eta * errors.sum()

note that we compute the logistic “cost™ now
instead of the sum of squared errors cost

cost = (-y.dot (np.log(output))

((1 - y).dot(np.log(l - output))))

self.cost .append(cost)

[67]

A Tour of Machine Learning Classifiers Using scikit-learn

return self

def net input (self, X):
""nCalculate net input"""
return np.dot (X, self.w [1:]) + self.w_ [0]

def activation(self, z):
""nCompute logistic sigmoid activation"""
return 1. / (1. + np.exp(-np.clip(z, -250, 250)))

def predict(self, X):
"""Return class label after unit step"""
return np.where (self.net input(X) >= 0.0, 1, 0)
equivalent to:
return np.where (self.activation(self.net input (X))
>= 0.5, 1, 0)

When we fit a logistic regression model, we have to keep in mind that it only
works for binary classification tasks. So, let us consider only Iris-setosa and
Iris-versicolor flowers (classes 0 and 1) and check that our implementation
of logistic regression works:

>>> X train 01 subset = X train[(y train == 0) | (y_train == 1)]
>>> y train 01 subset = y train[(y train == 0) | (y_train == 1)]
>>> lrgd = LogisticRegressionGD (eta=0.05,
n_iter=1000,
random_ state=1)
>>> lrgd.fit (X train 01 subset,
y _train 01 subset)The
>>> plot decision regions (X=X train 01 subset,
y=y train 01 subset,
.. classifier=1rgd)
>>> plt.xlabel ('petal length [standardized]')
>>> plt.ylabel ('petal width [standardized]')
>>> plt.legend(loc="upper left')
>>> plt.show()

[68]

Chapter 3

The resulting decision region plot looks as follows:

petal width [standardized]

o 1 2 3 4 5 B
petal length [standardized]

The gradient descent learning algorithm for logistic regression

Using calculus, we can show that the weight update in logistic regression
via gradient descent is equal to the equation that we used in Adaline in
Chapter 2, Training Simple Machine Learning Algorithms for Classification.
However, please note that the following derivation of the gradient
descent learning rule is intended for readers who are interested in the
mathematical concepts behind the gradient descent learning rule for
logistic regression. It is not essential for following the rest of this chapter.

Let's start by calculating the partial derivative of the log-likelihood

function with respect to the jth weight:
>

0

1 1 0
a5 4

J

Before we continue, let's also calculate the partial derivative of the
sigmoid function:
0 o 1 1 . 1 1
~ (Z) = -z = 2 e = —z 1_ —z
0z Oz l+e (1_,_6-2) I+e I+e

[69]

A Tour of Machine Learning Classifiers Using scikit-learn

Now, we can re-substitute Egﬁ(z) =¢(z)(1-¢(z)) in our first equation to
obtain the following: ‘

i e ;m]ai‘”“

1 1
(y«ﬁ(z) g)N 5
(1921192
=(v-4(2))x,

Remember that the goal is to find the weights that maximize the
log-likelihood so that we perform the update for each weight as follows:

wy = w3 (50 = ()0
i1

Since we update all weights simultaneously, we can write the general
update rule as follows:

w=w+Aw
We define Aw as follows:
Aw =nVI(w)
Since maximizing the log-likelihood is equal to minimizing the cost

function J that we defined earlier, we can write the gradient descent
update rule as follows:

N

]
w=w+Aw, Aw =-V.J (w)

This is equal to the gradient descent rule for Adaline in Chapter 2,
Training Simple Machine Learning Algorithms for Classification.

[70]

Chapter 3

Training a logistic regression model with
scikit-learn

We just went through useful coding and math exercises in the previous subsection,
which helped illustrate the conceptual differences between Adaline and logistic
regression. Now, let's learn how to use scikit-learn's more optimized implementation
of logistic regression that also supports multi-class settings off the shelf (OvR by
default). In the following code example, we will use the sklearn.linear model.
LogisticRegression class as well as the familiar £it method to train the model on
all three classes in the standardized flower training dataset:

>>> from sklearn.linear model import LogisticRegression
>>> 1lr = LogisticRegression(C=100.0, random state=1)
>>> lr.fit (X train std, y train)
>>> plot decision regions (X combined std,

y combined,

classifier=1r,
.. test idx=range (105, 150))
>>> plt.xlabel ('petal length [standardized]')
>>> plt.ylabel ('petal width [standardized]')
>>> plt.legend(loc="upper left')
>>> plt.show()

After fitting the model on the training data, we plotted the decision regions, training
samples, and test samples, as shown in the following figure:

m O
24 x 1
_ o 2
= () test set
1]
E 14
4
c
2
2 o4
£=
b=
2
"
& =]
“ 'l*
=7 -
-2 -1 0 1 2
petal length [standardized]

[71]

A Tour of Machine Learning Classifiers Using scikit-learn

Looking at the preceding code that we used to train the LogisticRegression
model, you might now be wondering, "What is this mysterious parameter c?" We
will discuss this parameter in the next subsection, where we first introduce the
concepts of overfitting and regularization. However, before we are moving on to
those topics, let's finish our discussion of class-membership probabilities.

The probability that training examples belong to a certain class can be computed
using the predict proba method. For example, we can predict the probabilities of
the first three samples in the test set as follows:

>>> lr.predict proba (X test std[:3, :])

This code snippet returns the following array:

array([[3.20136878e-08, 1.46953648e-01, 8.53046320e-01],
[8.34428069e-01, 1.65571931e-01, 4.57896429e-12],
[8.49182775e-01, 1.50817225e-01, 4.65678779e-13]11)

The first row corresponds to the class-membership probabilities of the first flower,
the second row corresponds to the class-membership probabilities of the third
flower, and so forth. Notice that the columns sum all up to one, as expected (you can
confirm this by executing 1r.predict_proba (X _test_std[:3, :]).sum(axis=1)).
The highest value in the first row is approximately 0.853, which means that the first
sample belongs to class three (1ris-virginica) with a predicted probability of 85.7
percent. So, as you may have already noticed, we can get the predicted class labels
by identifying the largest column in each row, for example, using NumPy's argmax
function:

>>> lr.predict proba (X test std[:3, :]).argmax(axis=1)

The returned class indices are shown here (they correspond to Iris-virginica,
Iris-setosa, and Iris-setosa):

array([2, 0, 0])

The class labels we obtained from the preceding conditional probabilities is, of
course, just a manual approach to calling the predict method directly, which we can
quickly verify as follows:

>>> lr.predict (X test std[:3, :1)
array([2, 0, 0])

[72]

Chapter 3

Lastly, a word of caution if you want to predict the class label of a single flower
sample: sciki-learn expects a two-dimensional array as data input; thus, we have to
convert a single row slice into such a format first. One way to convert a single row
entry into a two-dimensional data array is to use NumPy's reshape method to add a
new dimension, as demonstrated here:

>>> lr.predict (X test std[0, :].reshape(l, -1))
array ([2])

Tackling overfitting via regularization

Overfitting is a common problem in machine learning, where a model performs well
on training data but does not generalize well to unseen data (test data). If a model
suffers from overfitting, we also say that the model has a high variance, which can
be caused by having too many parameters that lead to a model that is too complex
given the underlying data. Similarly, our model can also suffer from underfitting
(high bias), which means that our model is not complex enough to capture the
pattern in the training data well and therefore also suffers from low performance on
unseen data.

Although we have only encountered linear models for classification so far, the
problem of overfitting and underfitting can be best illustrated by comparing a linear
decision boundary to more complex, nonlinear decision boundaries as shown in the
following figure:

3 | . X, i . ,1.'_.,1
\ O 0, o
3+ o i %)
Y 1 L
o'ty o 5,
4+ 4 +¢ 4 G4
i C G) A
Underfitting %7 Good X Overfitting
(high bias) compromise (high variance) '

[73]

A Tour of Machine Learning Classifiers Using scikit-learn

Variance measures the consistency (or variability) of the model
prediction for a particular sample instance if we were to retrain

. the model multiple times, for example, on different subsets of

% the training dataset. We can say that the model is sensitive to the
L randomness in the training data. In contrast, bias measures how far

off the predictions are from the correct values in general if we rebuild
the model multiple times on different training datasets; bias is the
measure of the systematic error that is not due to randomness.

One way of finding a good bias-variance tradeoff is to tune the complexity of

the model via regularization. Regularization is a very useful method to handle
collinearity (high correlation among features), filter out noise from data, and
eventually prevent overfitting. The concept behind regularization is to introduce
additional information (bias) to penalize extreme parameter (weight) values. The
most common form of regularization is so-called L2 regularization (sometimes also
called L2 shrinkage or weight decay), which can be written as follows:

2wl =23 2
A off -5

Here, A is the so-called regularization parameter.

Regularization is another reason why feature scaling such as

standardization is important. For regularization to work properly,
’ we need to ensure that all our features are on comparable scales.

The cost function for logistic regression can be regularized by adding a simple
regularization term, which will shrink the weights during model training:

n

3 0= 3 tog(8(=0) (12 (18 (=1) |+ £

[74]

Chapter 3

Via the regularization parameter A, we can then control how well we fit the training
data while keeping the weights small. By increasing the value of A1, we increase the
regularization strength.

The parameter c that is implemented for the LogisticRegression classin
scikit-learn comes from a convention in support vector machines, which will be

the topic of the next section. The term c is directly related to the regularization
parameter A, which is its inverse. Consequently, decreasing the value of the inverse
regularization parameter ¢ means that we are increasing the regularization strength,
which we can visualize by plotting the L2-regularization path for the two weight
coefficients:

>>> weights, params = [], []
>>> for ¢ in np.arange (-5, 5):
lr = LogisticRegression(C=10.**c, random state=1)
lr.fit (X train std, y train)
weights.append(lr.coef [1])
params.append (10.**c)
>>> weights = np.array(weights)
>>> plt.plot (params, weights[:, 0],
label="'petal length')
>>> plt.plot (params, weights[:, 1], linestyle='--"',
.. label="petal width')
>>> plt.ylabel ('weight coefficient')
>>> plt.xlabel ('C')
>>> plt.legend(loc="upper left')
>>> plt.xscale('log')
>>> plt.show()

By executing the preceding code, we fitted ten logistic regression models with
different values for the inverse-regularization parameter c. For the purposes of
illustration, we only collected the weight coefficients of class 1 (here, the second class
in the dataset, Iris-versicolor) versus all classifiers —remember that we are using
the OvVR technique for multiclass classification.

[75]

A Tour of Machine Learning Classifiers Using scikit-learn

As we can see in the resulting plot, the weight coefficients shrink if we decrease
parameter c, that is, if we increase the regularization strength:

— petal length e
24 ——- petal width

g 17
=
5
2 g4 B "
3
B
w
=

i,

=g e e e ———

104 107 100 10° 10°
c

Since an in-depth coverage of the individual classification
, algorithms exceeds the scope of this book, | strongly recommend
% Logistic Regression: From Introductory to Advanced Concepts and
s Applications, Dr. Scott Menard's, Sage Publications, 2009, to readers
who want to learn more about logistic regression.

Maximum margin classification with
support vector machines

Another powerful and widely used learning algorithm is the Support Vector
Machine (SVM), which can be considered an extension of the perceptron. Using the
perceptron algorithm, we minimized misclassification errors. However, in SVMs
our optimization objective is to maximize the margin. The margin is defined as the
distance between the separating hyperplane (decision boundary) and the training
samples that are closest to this hyperplane, which are the so-called support vectors.
This is illustrated in the following figure:

[76]

Chapter 3

Margin
- Support vectors
Xa \ A Xy ‘/)' ’
. % Decision boundary |- ‘;;/”
N N wix =0 & €4
o T I P < e |
A, B &) i
0® F } negative o @ ‘."-LI + pocie
TP | . hyperplane
oo l'rfp‘er[:me L o ., i e
L * win = -| A .
*i SVM: N
Which hyperplane? Maximize the margin

Maximum margin intuition

The rationale behind having decision boundaries with large margins is that they
tend to have a lower generalization error whereas models with small margins are
more prone to overfitting. To get an idea of the margin maximization, let's take a
closer look at those positive and negative hyperplanes that are parallel to the decision
boundary, which can be expressed as follows:

w, +wapos =1 (1)
w, + waneg =-1 (2)

If we subtract those two linear equations (1) and (2) from each other, we get:
=w' (xpgs — xneg) =2

We can normalize this equation by the length of the vector w, which is defined
as follows:

[l =225
w| = jzle

[77]

A Tour of Machine Learning Classifiers Using scikit-learn

So we arrive at the following equation:

T
w (xpos _xneg) 2

Wl vl

The left side of the preceding equation can then be interpreted as the distance
between the positive and negative hyperplane, which is the so-called margin that we
want to maximize.

Now, the objective function of the SVM becomes the maximization of this margin by
maximizing _2_ under the constraint that the samples are classified correctly, which

Wl
can be written as:

wy +w x> 1if y) =1
wy+w x <—1if y =—1
fori=1...N

Here, N is the number of samples in our dataset.

These two equations basically say that all negative samples should fall on one side
of the negative hyperplane, whereas all the positive samples should fall behind the
positive hyperplane, which can also be written more compactly as follows:

y(i) (wo + wa(i)) 21V,

In practice though, it is easier to minimize the reciprocal term 5||w||2 , which can be

solved by quadratic programming. However, a detailed discussion about quadratic
programming is beyond the scope of this book. You can learn more about support
vector machines in The Nature of Statistical Learning Theory, Springer Science+Business
Media, Viadimir Vapnik, 2000 or Chris J.C. Burges' excellent explanation in A Tutorial
on Support Vector Machines for Pattern Recognition (Data Mining and Knowledge
Discovery, 2(2): 121-167, 1998).

[78]

Chapter 3

Dealing with a nonlinearly separable case
using slack variables

Although we don't want to dive much deeper into the more involved mathematical
concepts behind the maximum-margin classification, let us briefly mention the

slack variable ¢, which was introduced by Vladimir Vapnik in 1995 and led to
the so-called soft-margin classification. The motivation for introducing the slack

variable ¢ was that the linear constraints need to be relaxed for nonlinearly
separable data to allow the convergence of the optimization in the presence of
misclassifications, under appropriate cost penalization.

The positive-values slack variable is simply added to the linear constraints:
w, + w x> 1—§(i) if y(i) =1
w, + wix <149 i 0 =1
fori=1...N

Here, N is the number of samples in our dataset. So the new objective to be
minimized (subject to the constraints) becomes:

Lo+ C(Z gmj

Via the variable ¢, we can then control the penalty for misclassification. Large
values of c correspond to large error penalties, whereas we are less strict about
misclassification errors if we choose smaller values for c. We can then use the ¢
parameter to control the width of the margin and therefore tune the bias-variance
trade-off, as illustrated in the following figure:

A';. ."'2 i
ol + ' +
'\1" L}
o \\‘ + + o E + }-I-
o w4 T o | ' 4+ ;
»] "l L+]]
. [
U [#] G\\I R “ o : [5] N
Xy Xy
Large value for Small value for
parameter C parameter C

[79]

A Tour of Machine Learning Classifiers Using scikit-learn

This concept is related to regularization, which we discussed in the previous section
in the context of regularized regression where decreasing the value of c increases the
bias and lowers the variance of the model.

Now that we have learned the basic concepts behind a linear SVM, let us train an
SVM model to classify the different flowers in our Iris dataset:

>>> from sklearn.svm import SVC

>>> svm = SVC(kernel='linear', C=1.0, random state=1)

>>> svm.fit (X_train_std, y train)

>>> plot decision regions (X combined std,
y_combined,
classifier=svm,

- test idx=range (105, 150))

>>> plt.xlabel ('petal length [standardized]')

>>> plt.ylabel ('petal width [standardized]')

>>> plt.legend(loc="'upper left')

>>> plt.show()

The three decision regions of the SVM, visualized after training the classifier
on the Iris dataset by executing the preceding code example, are shown in the
following plot:

petal width [standardized]

-3 =1 Q 1 2
petal length [standardized]

[80]

Chapter 3

Logistic regression versus support vector machines

In practical classification tasks, linear logistic regression and linear
SVMs often yield very similar results. Logistic regression tries to
. maximize the conditional likelihoods of the training data, which
% makes it more prone to outliers than SVMs, which mostly care
~ about the points that are closest to the decision boundary (support
vectors). On the other hand, logistic regression has the advantage
that it is a simpler model and can be implemented more easily.
Furthermore, logistic regression models can be easily updated,
which is attractive when working with streaming data.

Alternative implementations in scikit-learn

The scikit-learn library's Perceptron and LogisticRegression classes, which we
used in the previous sections, make use of the LIBLINEAR library, which is a highly
optimized C/C++ library developed at the National Taiwan University
(http://www.csie.ntu.edu.tw/~cjlin/liblinear/). Similarly, the svc class
that we used to train an SVM makes use of LIBSVM, which is an equivalent C/C++
library specialized for SVMs (http://www.csie.ntu.edu.tw/~cjlin/libsvm/).

The advantage of using LIBLINEAR and LIBSVM over native Python
implementations is that they allow the extremely quick training of large amounts
of linear classifiers. However, sometimes our datasets are too large to fit into
computer memory. Thus, scikit-learn also offers alternative implementations via
the sGpclassifier class, which also supports online learning via the partial fit
method. The concept behind the sebclassifier class is similar to the stochastic
gradient algorithm that we implemented in Chapter 2, Training Simple Machine
Learning Algorithms for Classification, for Adaline. We could initialize the stochastic
gradient descent version of the perceptron, logistic regression, and a support vector
machine with default parameters as follows:

>>> from sklearn.linear model import SGDClassifier
>>> ppn = SGDClassifier (loss='perceptron')

>>> lr = SGDClassifier(loss='log')

>>> gvm = SGDClassifier(loss='hinge')

[81]

A Tour of Machine Learning Classifiers Using scikit-learn

Solving nonlinear problems using a
kernel SVM

Another reason why SVMs enjoy high popularity among machine learning
practitioners is that it can be easily kernelized to solve nonlinear classification
problems. Before we discuss the main concept behind a kernel SVM, let's first

create a sample dataset to see what such a nonlinear classification problem may
look like.

Kernel methods for linearly inseparable data

Using the following code, we will create a simple dataset that has the form of an
XOR gate using the 1logical or function from NumPy, where 100 samples will be
assigned the class label 1, and 100 samples will be assigned the class label -1:

>>> import matplotlib.pyplot as plt
>>> import numpy as np

>>> np.random.seed (1)

>>> X xor = np.random.randn (200, 2)

>>> y xor = np.logical xor (X xor[:, 0] > O,
X xor[:, 1] > 0)

>>> y XOor = np.where(y xor, 1, -1)

>>> plt.scatter (X xor[y xor == 1, 0],
X xor[y xor == 1, 1],
c='b', marker='x"',
label="1")

>>> plt.scatter (X xor[y xor == -1, 0],
X_xor [y _xor == -1, 1],
c="'r'",

marker='s"',
c. label='-1")
>>> plt.xlim([-3, 31)
>>> plt.ylim([-3, 31)
>>> plt.legend(loc="'best')
>>> plt.show()

[82]

Chapter 3

After executing the code, we will have an XOR dataset with random noise, as shown

in the following figure:

3
x
21 = *® » xn .I
x ® :; _—
3| : X &m#x [] f.‘.
k4
we Hxx-,; ;g‘“g = . l'.
® wx ® % R g
¥] L T
0 - .g‘ﬁx e]
[] Kok w %
By .l‘ -P*}k N
-1] _. o :’«xx % "
B
] .-! oy
L}
- o -] % ® ®
™ b4
bt
=3 = v = -
=3 =2 =1 0 1 2

Obviously, we would not be able to separate samples from the positive and negative
class very well using a linear hyperplane as a decision boundary via the linear

logistic regression or linear SVM model that we discussed in earlier sections.

The basic idea behind kernel methods to deal with such linearly inseparable data
is to create nonlinear combinations of the original features to project them onto

a higher-dimensional space via a mapping function ¢ where it becomes linearly
separable. As shown in the following figure, we can transform a two-dimensional

dataset onto a new three-dimensional feature space where the classes become

separable via the following projection:

¢(x1,x2)=(21,22,23)=(x1,x2,x12 +x22)

[83]

A Tour of Machine Learning Classifiers Using scikit-learn

This allows us to separate the two classes shown in the plot via a linear hyperplane
that becomes a nonlinear decision boundary if we project it back onto the original
feature space:

- TN i r " = @ . LS
- - ol L
. =. =] a "-E""L:’.--"
ail > - e “ﬁ_.'r_'l# 10
FETE " S ¢ L "
My ee pe RTE e o+ —_— _—*_-'_ gs °3
R e L w
. r -
o lar e ..' : | o0
""-."“"..: "':l " | ———— e
=“Lirogs T epp 081013
D S S ——| % 8005 10 55100500
: - : 2 Z
X
1
l 1
LY
v} v e Nt
T s"y
o -~ i . -
| e st L N\
Kpooaf 4. w_'.::_: ::,-.: e
= *.nd SRV
L .
03 :: . g -,
. ‘-l-‘j..l -:' .
I1;_ 1o an o@ s 1 (4]
%

Using the kernel trick to find separating
hyperplanes in high-dimensional space

To solve a nonlinear problem using an SVM, we would transform the training data
onto a higher-dimensional feature space via a mapping function ¢ and train a linear
SVM model to classify the data in this new feature space. Then, we can use the same
mapping function ¢ to transform new, unseen data to classify it using the linear
SVM model.

[84]

Chapter 3

However, one problem with this mapping approach is that the construction of
the new features is computationally very expensive, especially if we are dealing
with high-dimensional data. This is where the so-called kernel trick comes into
play. Although we didn't go into much detail about how to solve the quadratic
programming task to train an SVM, in practice all we need is to replace the dot

. . \T R
product x7 X\ by ¢(x(’)) ¢(x(’)). In order to save the expensive step of
calculating this dot product between two points explicitly, we define a so-called
kernel function: K(x(’),x(i))=¢(x('))T¢(x(")).
One of the most widely used kernels is the Radial Basis Function (RBF) kernel or
simply called the Gaussian kernel:

2

()

K (x,x) = exp _Hx(i) -

207

This is often simplified to:

;C(X0, xm) _ exp(_ yux@)

2)
Here, y = % is a free parameter that is to be optimized.
o

Roughly speaking, the term kernel can be interpreted as a similarity function
between a pair of samples. The minus sign inverts the distance measure into a
similarity score, and, due to the exponential term, the resulting similarity score will
fall into a range between 1 (for exactly similar samples) and 0 (for very dissimilar
samples).

Now that we defined the big picture behind the kernel trick, let us see if we can train
a kernel SVM that is able to draw a nonlinear decision boundary that separates the
XOR data well. Here, we simply use the svc class from scikit-learn that we imported
earlier and replace the kernel='1inear' parameter with kernel="rbf':

>>> svm = SVC(kernel='rbf', random state=1, gamma=0.10, C=10.0)
>>> svm.fit (X xor, y xor)

>>> plot_decision regions (X xor, y xor, classifier=svm)

>>> plt.legend(loc="upper left')

>>> plt.show()

[85]

A Tour of Machine Learning Classifiers Using scikit-learn

As we can see in the resulting plot, the kernel SVM separates the XOR data relatively
well:

The 7 parameter, which we set to gamma=0. 1, can be understood as a cut-off
parameter for the Gaussian sphere. If we increase the value for 7, we increase the
influence or reach of the training samples, which leads to a tighter and bumpier
decision boundary. To get a better intuition for 7, let us apply an RBF kernel SVM to
our Iris flower dataset:

>>> svm = SVC(kernel='rbf', random state=1, gamma=0.2, C=1.0)
>>> svm.fit (X train std, y train)
>>> plot_decision regions (X combined std,
y combined, classifier=svm,
A test idx=range (105,150))
>>> plt.xlabel ('petal length [standardized]')
>>> plt.ylabel ('petal width [standardized]')
>>> plt.legend(loc="'upper left')
>>> plt.show()

[86]

Chapter 3

Since we chose a relatively small value for 7, the resulting decision boundary of the
RBF kernel SVM model will be relatively soft, as shown in the following figure:

petal width [standardized)

-2 -1 o 1 2
petal length [standardized)

Now, let us increase the value of 7 and observe the effect on the decision boundary:

>>> svm = SVC(kernel='rbf', random state=1, gamma=100.0, C=1.0)
>>> svm.fit (X_train std, y train)
>>> plot decision regions (X combined std,
y_combined, classifier=svm,
R test idx=range(105,150))
>>> plt.xlabel ('petal length [standardized]')
>>> plt.ylabel ('petal width [standardized]')
>>> plt.legend(loc="upper left')
>>> plt.show()

[87]

A Tour of Machine Learning Classifiers Using scikit-learn

In the resulting plot, we can now see that the decision boundary around the classes o
and 1 is much tighter using a relatively large value of 7 :

m 0
-4 ¥ 1
o 2
o () testser
3 11
]
=
=
(o]
8 4
5
2
z
B 1
(=8
-
2 -3 0 1 2
petal length [standardized]

Although the model fits the training dataset very well, such a classifier will likely
have a high generalization error on unseen data. This illustrates that the 7 parameter
also plays an important role in controlling overfitting.

Decision tree learning

Decision tree classifiers are attractive models if we care about interpretability. As the
name decision tree suggests, we can think of this model as breaking down our data
by making decision based on asking a series of questions.

[88]

Chapter 3

Let's consider the following example in which we use a decision tree to decide upon
an activity on a particular day:

[Wark to do!] Internal
node

Branch

Guuhuhl | Ga running] l Friends busy? \

Leaf Yci‘"/. \\\h.b

node | Sayin | Iﬂuwmmlul

Based on the features in our training set, the decision tree model learns a series of
questions to infer the class labels of the samples. Although the preceding figure
illustrates the concept of a decision tree based on categorical variables, the same
concept applies if our features are real numbers, like in the Iris dataset. For example,
we could simply define a cut-off value along the sepal width feature axis and ask a
binary question "Is sepal width >2.8 cm?."

Using the decision algorithm, we start at the tree root and split the data on the
feature that results in the largest Information Gain (IG), which will be explained in
more detail in the following section. In an iterative process, we can then repeat this
splitting procedure at each child node until the leaves are pure. This means that the
samples at each node all belong to the same class. In practice, this can result in a very
deep tree with many nodes, which can easily lead to overfitting. Thus, we typically
want to prune the tree by setting a limit for the maximal depth of the tree.

[89]

A Tour of Machine Learning Classifiers Using scikit-learn

Maximizing information gain — getting the
most bang for your buck

In order to split the nodes at the most informative features, we need to define an
objective function that we want to optimize via the tree learning algorithm. Here, our
objective function is to maximize the information gain at each split, which we define
as follows:

6(0,.)=1(0,)-5 51 (1)

J=1

Here, fis the feature to perform the split, D and D/ are the dataset of the parent
and jth child node, I is our impurity measure N, is the total number of samples at
the parent node, and N is the number of samples in the jth child node. As we can
see, the information gain is simply the difference between the impurity of the parent
node and the sum of the child node impurities — the lower the impurity of the child
nodes, the larger the information gain. However, for simplicity and to reduce the
combinatorial search space, most libraries (including scikit-learn) implement binary
decision trees. This means that each parent node is split into two child nodes, D,,
and D

rtght

N, N .
G(Dp’f):](Dp)_]\;Eﬁ](D/Lfﬂ)_%ml(Dﬁght)

p P

Now, the three impurity measures or splitting criteria that are commonly used in
binary decision trees are Gini impurity (/;), entropy (/,,), and the classification
error (I,). Let us start with the definition of entropy for all non-empty classes
(p(il2)=0):

1, (t)==2 p(ilt)log, p(il1)

[90]

Chapter 3

Here, p(i|z) is the proportion of the samples that belong to class ¢ for a particular
node t. The entropy is therefore 0 if all samples at a node belong to the same class,
and the entropy is maximal if we have a uniform class distribution. For example, in
a binary class setting, the entropy is 0 if p(i=1|7)=1or p(i=0|7)=0. If the classes
are distributed uniformly with p(i=1/7)=0.5 and p(i=0]|7)=0.5, the entropy is 1.
Therefore, we can say that the entropy criterion attempts to maximize the mutual
information in the tree.

Intuitively, the Gini impurity can be understood as a criterion to minimize the
probability of misclassification:

C

1) =2 P10 (-p(i10)=1-3 p(i10)

i=1

Similar to entropy, the Gini impurity is maximal if the classes are perfectly mixed, for
example, in a binary class setting (¢ = 2):

1,(1)=1-Y05* =05

i=1

However, in practice both Gini impurity and entropy typically yield very similar
results, and it is often not worth spending much time on evaluating trees using
different impurity criteria rather than experimenting with different pruning cut-offs.

Another impurity measure is the classification error:
I, =1—max{p(i\t)}

This is a useful criterion for pruning but not recommended for growing a decision
tree, since it is less sensitive to changes in the class probabilities of the nodes. We
can illustrate this by looking at the two possible splitting scenarios shown in the
following figure:

A B

(4040 |

(40, 40)

{20,0)

o0 | [o0] | 0.40) |

[91]

A Tour of Machine Learning Classifiers Using scikit-learn

We start with a dataset D, at the parent node D, , which consists 40 samples

from class 1 and 40 samples from class 2 that we split into two datasets, D, ,

and D, . The information gain using the classification error as a splitting
criterion would be the same (/G, =0.25) in both scenarios, A and B:

1,(D,)=1-05=0.5

A1, (D,eﬁ)=1—%=o.25

A1, (Dright):l—%:O.ZS

A:1G. =05 —%O.ZS —%0.25 =0.25

B:1G, :0.5—§x%—0:0.25

However, the Gini impurity would favor the split in scenario B (/G =0.16) over
scenario A (IG, =0.125), which is indeed more pure:

I,(D,)=1-(0.5+0.5")=0.5

A:1,(Dy,)= 1-((%)2 +GH =§= 0.375

[92]

Chapter 3

A1, (Drigh,)=1—((ﬂz +(%sz =§= 0.375

A:1G, = 0.5—%0.375—%0.375 =0.125

s {4 o

B: 1y (D,)=1-(1"+07)=0
6 _ =
B:IG, = 0.5—§0.4—0 =0.16
Similarly, the entropy criterion would also favor scenario B (/G,, =0.31) over scenario

A (IG, =0.19):

1,(D,)=~(0.5log,(0.5)+0.5 log, (0.5)) =1
3 3) 1 1
A:1, (Dleﬁ) = —[Zlog2 (Z}—Zlo& (ZD =0.81
1 1) 3 3
A: IH (D”-gh[) = —[Z 10g2 (Zj +210g2 (ij =0.81

A:1G, :1—20.81—30.81 =0.19

2 2) 4 4
B:1,(D,,)= —(glogz (Ej +log, (3)] =0.92

[93]

A Tour of Machine Learning Classifiers Using scikit-learn

B0, (D,0,)-0

B:1G, =l—§0.92—0=0.31

For a more visual comparison of the three different impurity criteria that we
discussed previously, let us plot the impurity indices for the probability range [0, 1]
for class 1. Note that we will also add a scaled version of the entropy (entropy 7 2) to
observe that the Gini impurity is an intermediate measure between entropy and the
classification error. The code is as follows:

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> def gini(p) :
.. return (p)*(1 - (p)) + (1 - p)*(1 - (1-p))
>>> def entropy(p) :
return - p*np.log2(p) - (1 - p)*np.log2((l - p))
>>> def error(p):
return 1 - np.max([p, 1 - pl)
>>> X = np.arange (0.0, 1.0, 0.01)

>>> ent = [entropy(p) if p != 0 else None for p in x]
>>> sc_ent = [e*0.5 if e else None for e in ent]
>>> err = [error(i) for i in x]

>>> fig = plt.figure()
>>> ax = plt.subplot(111)
>>> for i, lab, 1ls, c, in zip([ent, sc_ent, gini(x), err],
['Entropy', 'Entropy (scaled)',
'Gini Impurity',
'Misclassification Error'],
[r=r, "=, ==, =],
['black', 'lightgray',
'red', 'green', 'cyan']):
line = ax.plot(x, 1, label=lab,
linestyle=1ls, 1lw=2, color=c)
>>> ax.legend(loc='upper center',6 bbox to anchor=(0.5, 1.15),
ncol=5, fancybox=True, shadow=False)
>>> ax.axhline(y=0.5, linewidth=1, color='k', linestyle='--")
>>> ax.axhline(y=1.0, linewidth=1, color='k', linestyle='--")
>>> plt.ylim ([0, 1.1])
>>> plt.xlabel ('p(i=1)")
>>> plt.ylabel ('Impurity Index')
>>> plt.show()

[94]

Chapter 3

The plot produced by the preceding code example is as follows:

=—— Entrapy Entropy (scaled) === Gini lmpurity —-= Misclassification Error

1.0 7

0.8

0.6 4

Impurity Index

0.4 4

0.21

0.0

[iN] 0.2 04 (1] 08
pli=1)

Building a decision tree

Decision trees can build complex decision boundaries by dividing the feature

space into rectangles. However, we have to be careful since the deeper the decision
tree, the more complex the decision boundary becomes, which can easily result in
overfitting. Using scikit-learn, we will now train a decision tree with a maximum
depth of 3, using entropy as a criterion for impurity. Although feature scaling may
be desired for visualization purposes, note that feature scaling is not a requirement
for decision tree algorithms. The code is as follows:

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier(criterion='gini',
max_depth=4,
random_state=1)
tree.fit (X train, y train)
X combined = np.vstack((X_train, X test))
y combined = np.hstack((y_train, y test))
plot decision regions (X combined,
y combined,
classifier=tree,
test idx=range (105, 150))
plt.xlabel ('petal length [cm]')
plt.ylabel ('petal width [cm]')
plt.legend(loc="upper left')
plt.show ()

[95]

A Tour of Machine Learning Classifiers Using scikit-learn

After executing the code example, we get the typical axis-parallel decision
boundaries of the decision tree:

m 0
3049 % 1
e 2
237 O testset
T 2.0
=
£ 1.51
E
3 1.0
d 0.5
-]
0.0 4
—0.5 4
0 1 2 3 4 5 é 7
petal length [cm)

A nice feature in scikit-learn is that it allows us to export the decision tree as a . dot
file after training, which we can visualize using the GraphViz program, for example.

This program is freely available from http: //www.graphviz.org and supported

by Linux, Windows, and macOS. In addition to GraphViz, we will use a Python
library called pydotplus, which has capabilities similar to GraphViz and allows us
to convert . dot data files into a decision tree image file. After you installed GraphViz
(by following the instructions on http://www.graphviz.org/Download.php), you
can install pydotplus directly via the pip installer, for example, by executing the
following command in your Terminal:

> pip3 install pydotplus

Note that on some systems, you may have to install the
pydotplus prerequisites manually by executing the

following commands:
s

pip3 install graphviz
pip3 install pyparsing

[96]

Chapter 3

The following code will create an image of our decision tree in PNG format in our
local directory:

>>> from pydotplus import graph from dot data
>>> from sklearn.tree import export graphviz
>>> dot data = export graphviz(tree,
filled=True,
rounded=True,
class names=['Setosa',
'Versicolor',
'Virginica'l,
feature names=['petal length',
'petal width'],
R out file=None)
>>> graph = graph from dot data(dot_data)
>>> graph.write png('tree.png')

By using the out file=None setting, we directly assigned the dot data to a dot_data
variable, instead of writing an intermediate tree . dot file to disk. The arguments

for f£illed, rounded, class names, and feature names are optional but make

the resulting image file visually more appealing by adding color, rounding the box
edges, showing the name of the majority class label at each node, and displaying

the feature names in the splitting criterion. These settings resulted in the following
decision tree image:

ples
value = [0, 35, 35]
class » Viersicolar

A Tour of Machine Learning Classifiers Using scikit-learn

Looking at the decision tree figure, we can now nicely trace back the splits

that the decision tree determined from our training dataset. We started with

105 samples at the root and split them into two child nodes with 35 and 70 samples,
using the petal width cut-off < 0.75 cm. After the first split, we can see that the left
child node is already pure and only contains samples from the Iris-setosa class
(Gini Impurity = 0). The further splits on the right are then used to separate the
samples from the Iris-versicolor and Iris-virginica class.

Looking at this tree, and the decision region plot of the tree, we see that the
decision tree does a very good job of separating the flower classes. Unfortunately,
scikit-learn currently does not implement functionality to manually post-prune a
decision tree. However, we could go back to our previous code example, change the
max_depth of our decision tree to 3, and compare it to our current model, but we
leave this as an exercise for the interested reader.

Combining multiple decision trees via random
forests

Random forests have gained huge popularity in applications of machine learning
during the last decade due to their good classification performance, scalability,
and ease of use. Intuitively, a random forest can be considered as an ensemble

of decision trees. The idea behind a random forest is to average multiple (deep)
decision trees that individually suffer from high variance, to build a more robust
model that has a better generalization performance and is less susceptible to
overfitting. The random forest algorithm can be summarized in four simple steps:

1. Draw arandom bootstrap sample of size n (randomly choose n samples from
the training set with replacement).
2. Grow a decision tree from the bootstrap sample. At each node;
a. Randomly select d features without replacement.

b. Split the node using the feature that provides the best split according
to the objective function, for instance, maximizing the information
gain.

Repeat the steps 1-2 k times.

Aggregate the prediction by each tree to assign the class label by majority
vote. Majority voting will be discussed in more detail in Chapter 7, Combining
Different Models for Ensemble Learning.

[98]

Chapter 3

We should note one slight modification in step 2 when we are training the individual
decision trees: instead of evaluating all features to determine the best split at each
node, we only consider a random subset of those.

In case you are not familiar with the terms sampling with and without
replacement, let's walk through a simple thought experiment. Let's
assume we are playing a lottery game where we randomly draw
numbers from an urn. We start with an urn that holds five unique
numbers, 0, 1, 2, 3, and 4, and we draw exactly one number each turn.
In the first round, the chance of drawing a particular number from the
urn would be 1/5. Now, in sampling without replacement, we do not
put the number back into the urn after each turn. Consequently, the
probability of drawing a particular number from the set of remaining
. numbers in the next round depends on the previous round. For
% example, if we have a remaining set of numbers 0, 1, 2, and 4, the
~ chance of drawing number 0 would become 1/4 in the next turn.

However, in random sampling with replacement, we always return
the drawn number to the urn so that the probabilities of drawing a
particular number at each turn does not change; we can draw the
same number more than once. In other words, in sampling with
replacement, the samples (humbers) are independent and have a
covariance of zero. For example, the results from five rounds of
drawing random numbers could look like this:

e Random sampling without replacement: 2, 1, 3, 4,0
* Random sampling with replacement: 1, 3, 3,4, 1

Although random forests don't offer the same level of interpretability as decision
trees, a big advantage of random forests is that we don't have to worry so much
about choosing good hyperparameter values. We typically don't need to prune the
random forest since the ensemble model is quite robust to noise from the individual
decision trees. The only parameter that we really need to care about in practice is the
number of trees k (step 3) that we choose for the random forest. Typically, the larger
the number of trees, the better the performance of the random forest classifier at the
expense of an increased computational cost.

Although it is less common in practice, other hyperparameters of the random forest
classifier that can be optimized — using techniques we will discuss in Chapter 5,
Compressing Data via Dimensionality Reduction—are the size n of the bootstrap
sample (step 1) and the number of features d that is randomly chosen for each split
(step 2.1), respectively. Via the sample size n of the bootstrap sample, we control the
bias-variance tradeoff of the random forest.

[99]

A Tour of Machine Learning Classifiers Using scikit-learn

Decreasing the size of the bootstrap sample increases the diversity among the
individual trees, since the probability that a particular training sample is included
in the bootstrap sample is lower. Thus, shrinking the size of the bootstrap samples
may increase the randomness of the random forest, and it can help to reduce the
effect of overfitting. However, smaller bootstrap samples typically result in a lower
overall performance of the random forest, a small gap between training and test
performance, but a low test performance overall. Conversely, increasing the size of
the bootstrap sample may increase the degree of overfitting. Because the bootstrap
samples, and consequently the individual decision trees, become more similar to
each other, they learn to fit the original training dataset more closely.

In most implementations, including the RandomForestClassifier implementation
in scikit-learn, the size of the bootstrap sample is chosen to be equal to the number

of samples in the original training set, which usually provides a good bias-variance
tradeoff. For the number of features d at each split, we want to choose a value that is
smaller than the total number of features in the training set. A reasonable default that

is used in scikit-learn and other implementations is d = Jm , where m is the number
of features in the training set.

Conveniently, we don't have to construct the random forest classifier from individual
decision trees by ourselves because there is already an implementation in scikit-learn
that we can use:

>>> from sklearn.ensemble import RandomForestClassifier

>>> forest = RandomForestClassifier(criterion='gini',
n_estimators=25,
random_ state=1,
n_ jobs=2)

>>> forest.fit (X train, y train)

>>> plot_decision_regions (X combined, y combined,

. classifier=forest, test idx=range(105,150))

>>> plt.xlabel ('petal length')

>>> plt.ylabel ('petal width')

>>> plt.legend(loc="'upper left')

>>> plt.show()

[100]

Chapter 3

After executing the preceding code, we should see the decision regions formed by
the ensemble of trees in the random forest, as shown in the following figure:

o
i

[]
104 o
o 2
O

Bk test set
2.0
15

1.0+
0.5 4

a
0.0 4

L1} 1 2 3 4 5 7] 7
petal kength [om]

petal width [cm]

Using the preceding code, we trained a random forest from 25 decision trees via the
n_estimators parameter and used the entropy criterion as an impurity measure to
split the nodes. Although we are growing a very small random forest from a very
small training dataset, we used the n_jobs parameter for demonstration purposes,
which allows us to parallelize the model training using multiple cores of our
computer (here two cores).

K-nearest neighbors — a lazy learning
algorithm

The last supervised learning algorithm that we want to discuss in this chapter is the
k-nearest neighbor (KNN) classifier, which is particularly interesting because it is
fundamentally different from the learning algorithms that we have discussed so far.

KNN is a typical example of a lazy learner. It is called lazy not because of its
apparent simplicity, but because it doesn't learn a discriminative function from the
training data, but memorizes the training dataset instead.

[101]

A Tour of Machine Learning Classifiers Using scikit-learn

Parametric versus nonparametric models
Machine learning algorithms can be grouped into parametric and
nonparametric models. Using parametric models, we estimate
parameters from the training dataset to learn a function that can
classify new data points without requiring the original training dataset
anymore. Typical examples of parametric models are the perceptron,
_logistic regression, and the linear SVM. In contrast, nonparametric
models can't be characterized by a fixed set of parameters, and the
i number of parameters grows with the training data. Two examples of
non-parametric models that we have seen so far are the decision tree
classifier/random forest and the kernel SVM.

KNN belongs to a subcategory of nonparametric models that is
described as instance-based learning. Models based on instance-based
learning are characterized by memorizing the training dataset, and lazy
learning is a special case of instance-based learning that is associated
with no (zero) cost during the learning process.

The KNN algorithm itself is fairly straightforward and can be summarized by the
following steps:

1. Choose the number of k and a distance metric.

2. Find the k-nearest neighbors of the sample that we want to classify.

3. Assign the class label by majority vote.

The following figure illustrates how a new data point (?) is assigned the triangle class
label based on majority voting among its five nearest neighbors.

| =
I | *x o
Ix A

[102]

Chapter 3

Based on the chosen distance metric, the KNN algorithm finds the k samples in the
training dataset that are closest (most similar) to the point that we want to classify.
The class label of the new data point is then determined by a majority vote among its
k nearest neighbors.

The main advantage of such a memory-based approach is that the classifier
immediately adapts as we collect new training data. However, the downside is that
the computational complexity for classifying new samples grows linearly with the
number of samples in the training dataset in the worst-case scenario—unless the
dataset has very few dimensions (features) and the algorithm has been implemented
using efficient data structures such as KD-trees. An Algorithm for Finding Best Matches
in Logarithmic Expected Time, J. H. Friedman, J. L. Bentley, and R.A. Finkel, ACM
transactions on mathematical software (TOMS), 3(3): 209-226, 1977. Furthermore, we
can't discard training samples since no training step is involved. Thus, storage space
can become a challenge if we are working with large datasets.

By executing the following code, we will now implement a KNN model in scikit-
learn using a Euclidean distance metric:

>>> from sklearn.neighbors import KNeighborsClassifier

>>> knn = KNeighborsClassifier (n neighbors=5, p=2,
metric='minkowski')

>>> knn.fit (X train std, y train)

>>> plot decision regions (X combined std, y combined,

R classifier=knn, test idx=range(105,150))

>>> plt.xlabel ('petal length [standardized]')

>>> plt.ylabel ('petal width [standardized]')

>>> plt.legend(loc="upper left')

>>> plt.show()

By specifying five neighbors in the KNN model for this dataset, we obtain a
relatively smooth decision boundary, as shown in the following figure:

[
1
F

L}
®
=
O test set

petal width [standandized|

v - . : .
=2 =1 @ 1 2
petal bength [standardized]

[103]

A Tour of Machine Learning Classifiers Using scikit-learn

_Inthe case of a tie, the scikit-learn implementation of the KNN
% algorithm will prefer the neighbors with a closer distance to the
o sample. If the neighbors have similar distances, the algorithm will
choose the class label that comes first in the training dataset.

The right choice of k is crucial to find a good balance between overfitting and
underfitting. We also have to make sure that we choose a distance metric that

is appropriate for the features in the dataset. Often, a simple Euclidean distance
measure is used for real-value samples, for example, the flowers in our Iris dataset,
which have features measured in centimeters. However, if we are using a Euclidean
distance measure, it is also important to standardize the data so that each feature
contributes equally to the distance. The minkowski distance that we used in the
previous code is just a generalization of the Euclidean and Manhattan distance,
which can be written as follows:

d(xw,x(j)) s

k

0 _

X =Xk

It becomes the Euclidean distance if we set the parameter p=2 or the Manhattan
distance at p=1. Many other distance metrics are available in scikit-learn and can be
provided to the metric parameter. They are listed at http://scikit-learn.org/
stable/modules/generated/sklearn.neighbors.DistanceMetric.html.

The curse of dimensionality

It is important to mention that KNN is very susceptible to overfitting
due to the curse of dimensionality. The curse of dimensionality
describes the phenomenon where the feature space becomes
increasingly sparse for an increasing number of dimensions of a fixed-
. sizetraining dataset. Intuitively, we can think of even the closest
% neighbors being too far away in a high-dimensional space to give a
L good estimate.

We have discussed the concept of regularization in the section about
logistic regression as one way to avoid overfitting. However, in
models where regularization is not applicable, such as decision trees
and KNN, we can use feature selection and dimensionality reduction
techniques to help us avoid the curse of dimensionality. This will be
discussed in more detail in the next chapter.

[104]

Chapter 3

Summary

In this chapter, you learned about many different machine learning algorithms that
are used to tackle linear and nonlinear problems. We have seen that decision trees
are particularly attractive if we care about interpretability. Logistic regression is

not only a useful model for online learning via stochastic gradient descent, but also
allows us to predict the probability of a particular event. Although support vector
machines are powerful linear models that can be extended to nonlinear problems
via the kernel trick, they have many parameters that have to be tuned in order to
make good predictions. In contrast, ensemble methods such as random forests don't
require much parameter tuning and don't overfit as easily as decision trees, which
makes them attractive models for many practical problem domains. The KNN
classifier offers an alternative approach to classification via lazy learning that allows
us to make predictions without any model training, but with a more computationally
expensive prediction step.

However, even more important than the choice of an appropriate learning algorithm
is the available data in our training dataset. No algorithm will be able to make good
predictions without informative and discriminatory features.

In the next chapter, we will discuss important topics regarding the preprocessing
of data, feature selection, and dimensionality reduction, which we will need to
build powerful machine learning models. Later in Chapter 6, Learning Best Practices
for Model Evaluation and Hyperparameter Tuning, we will see how we can evaluate
and compare the performance of our models and learn useful tricks to fine-tune the
different algorithms.

[105]

Building Good Training
Sets — Data Preprocessing

The quality of the data and the amount of useful information that it contains are key
factors that determine how well a machine learning algorithm can learn. Therefore,
it is absolutely critical that we make sure to examine and preprocess a dataset before
we feed it to a learning algorithm. In this chapter, we will discuss the essential data
preprocessing techniques that will help us build good machine learning models.

The topics that we will cover in this chapter are as follows:

* Removing and imputing missing values from the dataset
e Getting categorical data into shape for machine learning algorithms
* Selecting relevant features for the model construction

Dealing with missing data

It is not uncommon in real-world applications for our samples to be missing one

or more values for various reasons. There could have been an error in the data
collection process, certain measurements are not applicable, or particular fields could
have been simply left blank in a survey, for example. We typically see missing values
as the blank spaces in our data table or as placeholder strings such as Nan, which
stands for not a number, or NULL (a commonly used indicator of unknown values in
relational databases).

Unfortunately, most computational tools are unable to handle such missing values,
or produce unpredictable results if we simply ignore them. Therefore, it is crucial
that we take care of those missing values before we proceed with further analyses.
In this section, we will work through several practical techniques for dealing with
missing values by removing entries from our dataset or imputing missing values
from other samples and features.

[107]

Building Good Training Sets — Data Preprocessing

Identifying missing values in tabular data

But before we discuss several techniques for dealing with missing values, let's create
a simple example data frame from a Comma-separated Values (CSV) file to get a
better grasp of the problem:

>>> import pandas as pd
>>> from io import StringIO

>>> csv_data = \

''"'A,B,C,D

1.0,2.0,3.0,4.0

5.0,6.0,,8.0

10.0,11.0,12.0, """
>>> # If you are using Python 2.7, you need
>>> # to convert the string to unicode:
>>> # csv_data = unicode(csv_data)
>>> df = pd.read csv(StringIO(csv_data))
>>> df

A B c
01.0 2.0 3.0 4.
1 5.0 6.0 NaN 8
2 10.0 11.0 12.0 NaN

b o g

Using the preceding code, we read CSV-formatted data into a pandas bataFrame
via the read_csv function and noticed that the two missing cells were replaced by
NaN. The stringIo function in the preceding code example was simply used for the
purposes of illustration. It allows us to read the string assigned to csv_data into a
pandas DataFrame as if it was a regular CSV file on our hard drive.

For a larger bataFrame, it can be tedious to look for missing values manually; in this
case, we can use the isnull method to return a bataFrame With Boolean values that
indicate whether a cell contains a numeric value (False) or if data is missing (True).
Using the sum method, we can then return the number of missing values per column
as follows:

>>> df.isnull () .sum()
A 0
B 0
C 1
D 1

dtype: inté4

[108]

Chapter 4

This way, we can count the number of missing values per column; in the following
subsections, we will take a look at different strategies for how to deal with this
missing data.

Although scikit-learn was developed for working with NumPy
arrays, it can sometimes be more convenient to preprocess data
using pandas' DataFrame. We can always access the underlying
. NumPy array of a DataFrame Vvia the values attribute before we
% feed it into a scikit-learn estimator:
.

>>> df.values

array ([[1., 2., 3., 4.1,
[5., 6., nan, 8.1,
[10., 11., 12., mnanll])

Eliminating samples or features with missing
values

One of the easiest ways to deal with missing data is to simply remove the
corresponding features (columns) or samples (rows) from the dataset entirely; rows
with missing values can be easily dropped via the dropna method:

>>> df .dropna (axis=0)
A B C D
0O 1.0 2.0 3.0 4.0

Similarly, we can drop columns that have at least one NaN in any row by setting the
axis argumentto 1:

>>> df .dropna (axis=1)
A B

0O 1.0 2.0

1 5.0 6.0

2 10.0 11.0

The dropna method supports several additional parameters that can come in handy:

only drop rows where all columns are NaN
(returns the whole array here since we don't
have a row with where all values are NaN
>>> df.dropna (how="'all")
A B C D
0O 1.0 2.0 3.0 4.0

[109]

Building Good Training Sets — Data Preprocessing

1 5.0 6.0 NaN 8.0
2 10.0 11.0 12.0 NaN

drop rows that have less than 4 real values
>>> df .dropna (thresh=4)

A B c D
0O 1.0 2.0 3.0 4.0

only drop rows where NaN appear in specific columns (here: 'C')
>>> df .dropna (subset=['C'])
A B C D
0O 1.0 2.0 3.0 4.0
2 10.0 11.0 12.0 NaN

Although the removal of missing data seems to be a convenient approach, it also
comes with certain disadvantages; for example, we may end up removing too

many samples, which will make a reliable analysis impossible. Or, if we remove too
many feature columns, we will run the risk of losing valuable information that our
classifier needs to discriminate between classes. In the next section, we will thus
look at one of the most commonly used alternatives for dealing with missing values:
interpolation techniques.

Imputing missing values

Often, the removal of samples or dropping of entire feature columns is simply not
feasible, because we might lose too much valuable data. In this case, we can use
different interpolation techniques to estimate the missing values from the other
training samples in our dataset. One of the most common interpolation techniques
is mean imputation, where we simply replace the missing value with the mean
value of the entire feature column. A convenient way to achieve this is by using the
Imputer class from scikit-learn, as shown in the following code:

>>> from sklearn.preprocessing import Imputer

>>> imr = Imputer (missing values='NaN', strategy='mean',6 axis=0)
>>> imr = imr.fit (df.values)

>>> imputed data = imr.transform(df.values)

>>> imputed data

array ([[1., 2., 3., 4.1,
[5., 6., 7.5, 8.1,
[10., 11., 12., 6.11)

[110]

Chapter 4

Here, we replaced each nan value with the corresponding mean, which is separately
calculated for each feature column. If we changed the axis=0 setting to axis=1, we'd
calculate the row means. Other options for the strategy parameter are median or
most_frequent, Where the latter replaces the missing values with the most frequent
values. This is useful for imputing categorical feature values, for example, a feature
column that stores an encoding of color names, such as red, green, and blue, and we
will encounter examples of such data later in this chapter.

Understanding the scikit-learn estimator API

In the previous section, we used the Imputer class from scikit-learn to impute
missing values in our dataset. The tmputer class belongs to the so-called transformer
classes in scikit-learn, which are used for data transformation. The two essential
methods of those estimators are £it and transform. The £it method is used to

learn the parameters from the training data, and the transform method uses those
parameters to transform the data. Any data array that is to be transformed needs to
have the same number of features as the data array that was used to fit the model.
The following figure illustrates how a transformer, fitted on the training data, is used
to transform a training dataset as well as a new test dataset:

Training Test
Data Data

@est.transf@rnﬂ_train} Model est .tr'ansﬂr'm{!_test}@

Transformed Transformed
Training Data Test Data

[111]

Building Good Training Sets — Data Preprocessing

The classifiers that we used in Chapter 3, A Tour of Machine Learning Classifiers

Using scikit-learn, belong to the so-called estimators in scikit-learn with an API that
is conceptually very similar to the transformer class. Estimators have a predict
method but can also have a transform method, as we will see later in this chapter.
As you may recall, we also used the £it method to learn the parameters of a model
when we trained those estimators for classification. However, in supervised learning
tasks, we additionally provide the class labels for fitting the model, which can then
be used to make predictions about new data samples via the predict method, as
illustrated in the following figure:

Training Training
Darta Labels

1
®| est.predict (% test)]
v

Predicted
labels

Handling categorical data

So far, we have only been working with numerical values. However, it is not
uncommon that real-world datasets contain one or more categorical feature columns.
In this section, we will make use of simple yet effective examples to see how we deal
with this type of data in numerical computing libraries.

[112]

Chapter 4

Nominal and ordinal features

When we are talking about categorical data, we have to further distinguish between
nominal and ordinal features. Ordinal features can be understood as categorical
values that can be sorted or ordered. For example, t-shirt size would be an ordinal
feature, because we can define an order XL > L > M. In contrast, nominal features
don't imply any order and, to continue with the previous example, we could think of
t-shirt color as a nominal feature since it typically doesn't make sense to say that, for
example, red is larger than blue.

Creating an example dataset

Before we explore different techniques to handle such categorical data, let's create a
new DataFrame to illustrate the problem:

>>> import pandas as pd
>>> df = pd.DataFrame ([

['green', 'M', 10.1, 'classl'],
['red', 'L', 13.5, 'class2'],
.. ['blue', 'XL', 15.3, 'classl'l])
>>> df.columns = ['color', 'size', 'price', 'classlabel']
>>> df
color size price classlabel
0 green M 10.1 classl
1 red L 13.5 class2
2 blue XL 15.3 classl

As we can see in the preceding output, the newly created DataFrame contains a
nominal feature (color), an ordinal feature (size), and a numerical feature (price)
column. The class labels (assuming that we created a dataset for a supervised
learning task) are stored in the last column. The learning algorithms for classification
that we discuss in this book do not use ordinal information in class labels.

Mapping ordinal features

To make sure that the learning algorithm interprets the ordinal features correctly,
we need to convert the categorical string values into integers. Unfortunately, there is
no convenient function that can automatically derive the correct order of the labels
of our size feature, so we have to define the mapping manually. In the following
simple example, let's assume that we know the numerical difference between
features, for example, XL =L+1=M +2:

>>> size mapping = {
XL 3,
L2,

[113]

Building Good Training Sets — Data Preprocessing

M': 1}
>>> df ['size'] = df['size'] .map(size mapping)
>>> df
color size price classlabel
0 green 1 10.1 classl
red 2 13.5 class2
2 blue 3 15.3 classl

If we want to transform the integer values back to the original string representation

at a later stage, we can simply define a reverse-mapping dictionary inv_size_
mapping = {v: k for k, v in size mapping.items () } that can then be
used via the pandas map method on the transformed feature column, similar to
the size mapping dictionary that we used previously. We can use it as follows:

>>> inv_size mapping = {v: k for k, v in size mapping.items() }
>>> df ['size'] .map (inv_size mapping)

0 M
1 L
2 XL

Name: size, dtype: object

Encoding class labels

Many machine learning libraries require that class labels are encoded as integer
values. Although most estimators for classification in scikit-learn convert class

labels to integers internally, it is considered good practice to provide class labels as

integer arrays to avoid technical glitches. To encode the class labels, we can use an

approach similar to the mapping of ordinal features discussed previously. We need

to remember that class labels are not ordinal, and it doesn't matter which integer
number we assign to a particular string label. Thus, we can simply enumerate the
class labels, starting at o:

>>> import numpy as np

>>> class mapping = {label:idx for idx,label in
enumerate(np.unique(df['classlabel']))}

>>> class_mapping

{rclass1i': 0, 'class2': 1}

[114]

Chapter 4

Next, we can use the mapping dictionary to transform the class labels into integers:

>>> df ['classlabel'] = df['classlabel'] .map(class mapping)

>>> df
color size price classlabel
0 green 1 10.1 0
red 2 13.5 1
2 blue 3 15.3 0

We can reverse the key-value pairs in the mapping dictionary as follows to map the
converted class labels back to the original string representation:

>>> inv_class mapping = {v: k for k, v in class mapping.items() }
>>> df ['classlabel'] = df['classlabel'] .map(inv_class mapping)
>>> df
color size price classlabel
0 green 1 10.1 classl
red 2 13.5 class2
2 blue 3 15.3 classl

Alternatively, there is a convenient LabelEncoder class directly implemented in
scikit-learn to achieve this:

>>> from sklearn.preprocessing import LabelEncoder

>>> class_le = LabelEncoder ()

>>> y = class_le.fit_transform(df['classlabel'] .values)
>>> Yy

array ([0, 1, 01)

Note that the fit transform method is just a shortcut for calling £it and
transform separately, and we can use the inverse transform method to transform
the integer class labels back into their original string representation:

>>> class le.inverse transform/(y)
array(['classl', 'class2', 'classl'], dtype=object)

[115]

Building Good Training Sets — Data Preprocessing

Performing one-hot encoding on nominal
features

In the previous section, we used a simple dictionary-mapping approach to convert
the ordinal size feature into integers. Since scikit-learn's estimators for classification
treat class labels as categorical data that does not imply any order (nominal), we used
the convenient LabelEncoder to encode the string labels into integers. It may appear
that we could use a similar approach to transform the nominal color column of our
dataset, as follows:

>>> X = df[['color', 'size', 'price'l].values
>>> color le = LabelEncoder ()

>>> X[:, 0] = color le.fit transform(X[:, 0])
>>> X

array([[1, 1, 10.1],
[2, 2, 13.5],
[0, 3, 15.3]], dtype=object)

After executing the preceding code, the first column of the NumPy array x now
holds the new color values, which are encoded as follows:

®* Dblue=0
® green=1

® red=2

If we stop at this point and feed the array to our classifier, we will make one of the
most common mistakes in dealing with categorical data. Can you spot the problem?
Although the color values don't come in any particular order, a learning algorithm
will now assume that green is larger than bilue, and red is larger than green.
Although this assumption is incorrect, the algorithm could still produce useful
results. However, those results would not be optimal.

A common workaround for this problem is to use a technique called one-hot
encoding. The idea behind this approach is to create a new dummy feature for each
unigue value in the nominal feature column. Here, we would convert the color
feature into three new features: blue, green, and red. Binary values can then be
used to indicate the particular color of a sample; for example, a blue sample can be
encoded as blue=1, green=0, red=0. TO perform this transformation, we can use the
OneHotEncoder that is implemented in the scikit-learn.preprocessing module:

>>> from sklearn.preprocessing import OneHotEncoder

>>> ohe = OneHotEncoder (categorical features=[0])
>>> ohe.fit_ transform(X) .toarray ()

[116]

Chapter 4

array([[0. , 1. , 0. , 1. , 10.17,
[0., 0. , 1. , 2. , 13.5],
[1., 0. , 0. , 3., 15.3]11)

When we initialized the oneHotEncoder, we defined the column position of the
variable that we want to transform via the categorical features parameter (note
that color is the first column in the feature matrix x). By default, the oneHotEncoder
returns a sparse matrix when we use the transform method, and we converted the
sparse matrix representation into a regular (dense) NumPy array for the purpose

of visualization via the toarray method. Sparse matrices are a more efficient way

of storing large datasets and one that is supported by many scikit-learn functions,
which is especially useful if an array contains a lot of zeros. To omit the toarray
step, we could alternatively initialize the encoder as oneHotEncoder (. . .,
sparse=False) to return a regular NumPy array.

An even more convenient way to create those dummy features via one-hot encoding
is to use the get _dummies method implemented in pandas. Applied to a DataFrame,
the get dummies method will only convert string columns and leave all other
columns unchanged:

>>> pd.get dummies (df [['price', 'color',6 'size']])

price size color blue color green color red
0 10.1 1 0 1 0
1 13.5 2 0 0 1
2 15.3 3 1 0 0

When we are using one-hot encoding datasets, we have to keep in mind that it
introduces multicollinearity, which can be an issue for certain methods (for instance,
methods that require matrix inversion). If features are highly correlated, matrices are
computationally difficult to invert, which can lead to numerically unstable estimates.
To reduce the correlation among variables, we can simply remove one feature
column from the one-hot encoded array. Note that we do not lose any important
information by removing a feature column, though; for example, if we remove the
column color blue, the feature information is still preserved since if we observe
color green=0 and color red=0, it implies that the observation must be blue.

If we use the get_dummies function, we can drop the first column by passing a True
argument to the drop first parameter, as shown in the following code example:

>>> pd.get dummies (df[['price', 'color', 'size'l],
drop first=True)
price size color green color red

0 10.1 1 1 0
1 13.5 2 0 1
2 15.3 3 0 0

[117]

Building Good Training Sets — Data Preprocessing

The oneHotEncoder does not have a parameter for column removal, but we
can simply slice the one-hot encoded NumPy array as shown in the following
code snippet:

ohe = OneHotEncoder (categorical features=[0])
ohe.fit transform(X) .toarray() [:, 1:]
array ([[1. , 0. , 1. , 10.17,

[0., 1., 2., 13.5],

[0., 0. , 3., 15.311)

Partitioning a dataset into separate
training and test sets

We briefly introduced the concept of partitioning a dataset into separate datasets

for training and testing in Chapter 1, Giving Computers the Ability to Learn from Data,
and Chapter 3, A Tour of Machine Learning Classifiers Using scikit-learn. Remember that
comparing predictions to true labels in the test set can be understood as the unbiased
performance evaluation of our model before we let it loose on the real world. In this
section, we will prepare a new dataset, the Wine dataset. After we have preprocessed
the dataset, we will explore different techniques for feature selection to reduce the
dimensionality of a dataset.

The Wine dataset is another open-source dataset that is available from the UCI
machine learning repository (https://archive.ics.uci.edu/ml/datasets/Wine);
it consists of 178 wine samples with 13 features describing their different chemical
properties.

You can find a copy of the Wine dataset (and all other datasets used
in this book) in the code bundle of this book, which you can use if you
are working offline or the dataset at https://archive.ics.uci.
edu/ml/machine-learning-databases/wine/wine.data is
temporarily unavailable on the UCI server. For instance, to load the
Wine dataset from a local directory, you can replace this line:

& df = pd.read csv('https://archive.ics.uci.edu/ml/"’
> 'machine-learning-databases/wine/wine.data',
header=None)
Replace it with this:

df = pd.read csv('your/local/path/to/wine.data"',

header=None)

[118]

Chapter 4

Using the pandas library, we will directly read in the open source Wine dataset from
the UCI machine learning repository:

>>> df wine = pd.read csv('https://archive.ics.uci.edu/'

>>> df wine.columns

'ml/machine-learning-databases/"'
'wine/wine.data', header=None)
['Class label', 'Alcohol',

'Malic acid', 'Ash',

'Alcalinity of ash', 'Magnesium',
'Total phenols', 'Flavanoids',
'Nonflavanoid phenols',
'Proanthocyanins',

'Color intensity', 'Hue',

'0D280/0D315 of diluted wines',
'Proline']

>>> print ('Class labels', np.unique(df wine['Class label']))

Class labels
>>> df_wine.head()

[1 2 3]

The 13 different features in the Wine dataset, describing the chemical properties of
the 178 wine samples, are listed in the following table:

I T | | | | | ODIMNODITS | |
.ﬁ::immmuq“”” mnE:::”'guwimnmET"' EFnunuuﬁ”m""'m”Enuumu:pﬁn:::;m'nu;:::au 14Fm“.
ot |uaa |in |243)188 127 280|308 |o8 |2.20 [se4 [roafase 1965
(v a2 [1m |aualna oo [2es |28 n2e 128 438 [1.08 (240 1050
I.E E1 !1118 IE!ﬁ ‘2.5? i 18.8 "Il'.'l1 IE.BlZI ‘E!.!d iB.!l:I ‘EJ.BI ;5.5& IIII!L3 7 "I'IB!
31__ :1_1.:5? Il“_“f'%h‘_“ I iaﬁ Ezuul n&.u 15;'.1!- ;:.m -n mgr:sf!. :14311
!4.1 .15.24. :?.ED _?B?;?iﬁ _113 ?HJ .250- !I}}ﬁ 5132 I:l..'." j1|3-4§_2'i’3 .Eﬁ

The samples belong to one of three different classes, 1, 2, and 3, which refer to the
three different types of grape grown in the same region in Italy but derived from
different wine cultivars, as described in the dataset summary (https://archive.
ics.uci.edu/ml/machine-learning-databases/wine/wine.names).

A convenient way to randomly partition this dataset into separate test and
training datasets is to use the train test_split function from scikit-learn's
model selection submodule:

>>> from sklearn.model selection import train test split

>>> X, vy

df wine.iloc[:, 1:].values, df wine.iloc[:, 0].values

>>> X train, X test, y train, y test =\
train test split(X, vy,

test size=0.3,
random_state=0,
stratify=y)

[119]

Building Good Training Sets — Data Preprocessing

First, we assigned the NumPy array representation of the feature columns 1-13 to the
variable x; we assigned the class labels from the first column to the variable y. Then,
we used the train_test split function to randomly split x and y into separate
training and test datasets. By setting test_size=0.3, we assigned 30 percent of the
wine samples to X_test and y_test, and the remaining 70 percent of the samples
were assigned to x_trainandy_ train, respectively. Providing the class label array
y as an argument to stratify ensures that both training and test datasets have the
same class proportions as the original dataset.

If we are dividing a dataset into training and test datasets, we have to
keep in mind that we are withholding valuable information that the
learning algorithm could benefit from. Thus, we don't want to allocate
too much information to the test set. However, the smaller the test
set, the more inaccurate the estimation of the generalization error.
Dividing a dataset into training and test sets is all about balancing
this trade-off. In practice, the most commonly used splits are 60:40,
+ 70:30, or 80:20, depending on the size of the initial dataset. However,
% for large datasets, 90:10 or 99:1 splits into training and test subsets
T are also common and appropriate. Instead of discarding the allocated

test data after model training and evaluation, it is a common practice
to retrain a classifier on the entire dataset as it can improve the
predictive performance of the model. While this approach is generally
recommended, it could lead to worse generalization performance
if the dataset is small and the test set contains outliers, for example.
Also, after refitting the model on the whole dataset, we don't have any
independent data left to evaluate its performance.

Bringing features onto the same scale

Feature scaling is a crucial step in our preprocessing pipeline that can easily be
forgotten. Decision trees and random forests are two of the very few machine
learning algorithms where we don't need to worry about feature scaling. Those
algorithms are scale invariant. However, the majority of machine learning and
optimization algorithms behave much better if features are on the same scale, as we
have seen in Chapter 2, Training Simple Machine Learning Algorithms for Classification,
when we implemented the gradient descent optimization algorithm.

[120]

Chapter 4

The importance of feature scaling can be illustrated by a simple example. Let's
assume that we have two features where one feature is measured on a scale from 1
to 10 and the second feature is measured on a scale from 1 to 100,000, respectively.
When we think of the squared error function in Adaline in Chapter 2, Training Simple
Machine Learning Algorithms for Classification, it is intuitive to say that the algorithm
will mostly be busy optimizing the weights according to the larger errors in the
second feature. Another example is the k-nearest neighbors (KNN) algorithm with
a Euclidean distance measure; the computed distances between samples will be
dominated by the second feature axis.

Now, there are two common approaches to bring different features onto the same
scale: normalization and standardization. Those terms are often used quite loosely
in different fields, and the meaning has to be derived from the context. Most often,
normalization refers to the rescaling of the features to a range of [0, 1], which is a
special case of min-max scaling. To normalize our data, we can simply apply the
min-max scaling to each feature column, where the new value xf,io)rm of asample X
can be calculated as follows:

i

Here, x" isa particular sample, x,_,
x,... the largest value.

is the smallest value in a feature column, and

n

The min-max scaling procedure is implemented in scikit-learn and can be used as
follows:

>>> from sklearn.preprocessing import MinMaxScaler
>>> mms = MinMaxScaler ()

>>> X train norm = mms.fit transform(X train)

>>> X test_norm = mms.transform(X_test)

[121]

Building Good Training Sets — Data Preprocessing

Although normalization via min-max scaling is a commonly used technique that

is useful when we need values in a bounded interval, standardization can be more
practical for many machine learning algorithms, especially for optimization algorithms
such as gradient descent. The reason is that many linear models, such as the logistic
regression and SVM that we remember from Chapter 3, A Tour of Machine Learning
Classifiers Using scikit-learn, initialize the weights to 0 or small random values close

to 0. Using standardization, we center the feature columns at mean 0 with standard
deviation 1 so that the feature columns takes the form of a normal distribution, which
makes it easier to learn the weights. Furthermore, standardization maintains useful
information about outliers and makes the algorithm less sensitive to them in contrast
to min-max scaling, which scales the data to a limited range of values.

The procedure for standardization can be expressed by the following equation:

(i _ x(i) _/ux

xstd -

Here, x4, is the sample mean of a particular feature column and o_ is the
corresponding standard deviation.

The following table illustrates the difference between the two commonly used
feature scaling techniques, standardization and normalization, on a simple sample
dataset consisting of numbers 0 to 5:

Input Standardized Min-max normalized
0.0 -1.46385 0.0
1.0 -0.87831 0.2
2.0 -0.29277 0.4
3.0 0.29277 0.6
4.0 0.87831 0.8
5.0 1.46385 1.0

You can perform the standardization and normalization shown in the table manually
by executing the following code examples:

>>> ex = np.array ([0, 1, 2, 3, 4, 5])

>>> print ('standardized:', (ex - ex.mean()) / ex.std())
standardized: [-1.46385011 -0.87831007 -0.29277002 0.29277002
0.87831007 1.46385011]

>>> print ('normalized:', (ex - ex.min()) / (ex.max() - ex.min()))
normalized: [0. 0.2 0.4 0.6 0.8 1.1

[122]

Chapter 4

Similar to the MinMaxScaler class, scikit-learn also implements a class for
standardization:

>>> from sklearn.preprocessing import StandardScaler
>>> stdsc = StandardScaler ()

>>> X train std = stdsc.fit transform(X train)

>>> X test std = stdsc.transform(X test)

Again, it is also important to highlight that we fit the Standardscaler class only
once—on the training data—and use those parameters to transform the test set or
any new data point.

Selecting meaningful features

If we notice that a model performs much better on a training dataset than on the

test dataset, this observation is a strong indicator of overfitting. As we discussed in
Chapter 3, A Tour of Machine Learning Classifiers Using scikit-learn, overfitting means
the model fits the parameters too closely with regard to the particular observations in
the training dataset, but does not generalize well to new data, and we say the model
has a high variance. The reason for the overfitting is that our model is too complex

for the given training data. Common solutions to reduce the generalization error are
listed as follows:

e Collect more training data

e Introduce a penalty for complexity via regularization

e Choose a simpler model with fewer parameters

* Reduce the dimensionality of the data
Collecting more training data is often not applicable. In Chapter 6, Learning Best
Practices for Model Evaluation and Hyperparameter Tuning, we will learn about a useful
technique to check whether more training data is helpful at all. In the following
sections, we will look at common ways to reduce overfitting by regularization and

dimensionality reduction via feature selection, which leads to simpler models by
requiring fewer parameters to be fitted to the data.

[123]

Building Good Training Sets — Data Preprocessing

L1 and L2 regularization as penalties against
model complexity

We recall from Chapter 3, A Tour of Machine Learning Classifiers Using scikit-learn,
that L2 regularization is one approach to reduce the complexity of a model by
penalizing large individual weights, where we defined the L2 norm of our weight
vector w as follows:

L2:|f; =3
J=
Another approach to reduce the model complexity is the related L1 regularization:
1zl =2 |
=

Here, we simply replaced the square of the weights by the sum of the absolute
values of the weights. In contrast to L2 regularization, L1 regularization usually
yields sparse feature vectors; most feature weights will be zero. Sparsity can be
useful in practice if we have a high-dimensional dataset with many features that are
irrelevant, especially cases where we have more irrelevant dimensions than samples.
In this sense, L1 regularization can be understood as a technique for feature selection.

A geometric interpretation of L2 regularization

As mentioned in the previous section, L2 regularization adds a penalty term to

the cost function that effectively results in less extreme weight values compared

to a model trained with an unregularized cost function. To better understand how
L1 regularization encourages sparsity, let's take a step back and take a look at a
geometric interpretation of regularization. Let us plot the contours of a convex cost
function for two weight coefficients w, and w, . Here, we will consider the Sum of
Squared Errors (SSE) cost function that we used for Adaline in Chapter 2, Training
Simple Machine Learning Algorithms for Classification, since it is spherical and easier to
draw than the cost function of logistic regression; however, the same concepts apply
to the latter. Remember that our goal is to find the combination of weight coefficients
that minimize the cost function for the training data, as shown in the following figure
(the point in the center of the ellipses):

[124]

Chapter 4

Minimize cost

Now, we can think of regularization as adding a penalty term to the cost function to

encourage smaller weights; or in other words, we penalize large weights.

Thus, by increasing the regularization strength via the regularization parameter A,
we shrink the weights towards zero and decrease the dependence of our model
on the training data. Let us illustrate this concept in the following figure for the L2

penalty term:

Mliwll3

Minimize penaly

Minimize cost + penalty

[125]

Building Good Training Sets — Data Preprocessing

The quadratic L2 regularization term is represented by the shaded ball. Here, our
weight coefficients cannot exceed our regularization budget — the combination of the
weight coefficients cannot fall outside the shaded area. On the other hand, we still
want to minimize the cost function. Under the penalty constraint, our best effort is
to choose the point where the L2 ball intersects with the contours of the unpenalized
cost function. The larger the value of the regularization parameter A gets, the faster
the penalized cost grows, which leads to a narrower L2 ball. For example, if we
increase the regularization parameter towards infinity, the weight coefficients will
become effectively zero, denoted by the center of the L2 ball. To summarize the
main message of the example, our goal is to minimize the sum of the unpenalized
cost plus the penalty term, which can be understood as adding bias and preferring a
simpler model to reduce the variance in the absence of sufficient training data to fit
the model.

Sparse solutions with L1 regularization

Now, let us discuss L1 regularization and sparsity. The main concept behind

L1 regularization is similar to what we have discussed in the previous section.
However, since the L1 penalty is the sum of the absolute weight coefficients
(remember that the L2 term is quadratic), we can represent it as a diamond-shape
budget, as shown in the following figure:

.— Minimize cost

ey
{

/A
| '
i I". Ill\ \

“a\\\\\

Allwlly

Minimize cost + penalty

Minimize penalty (w, =0)

[126]

Chapter 4

In the preceding figure, we can see that the contour of the cost function touches the
L1 diamond at w;, = 0. Since the contours of an L1 regularized system are sharp, it
is more likely that the optimum—that is, the intersection between the ellipses of the
cost function and the boundary of the L1 diamond—is located on the axes, which
encourages sparsity.

The mathematical details of why L1 regularization can lead to sparse
solutions are beyond the scope of this book. If you are interested, an

excellent explanation of L2 versus L1 regularization can be found in
e Section 3.4, The Elements of Statistical Learning, Trevor Hastie, Robert
Tibshirani, and Jerome Friedman, Springer Science+Business Media, 2009).

For regularized models in scikit-learn that support L1 regularization, we can simply
set the penalty parameter to '11' to obtain a sparse solution:

>>> from sklearn.linear model import LogisticRegression

>>> LogisticRegression (penalty='11")

Applied to the standardized Wine data, the L1 regularized logistic regression would
yield the following sparse solution:

>>> lr = LogisticRegression(penalty='11', C=1.0)

>>> lr.fit (X _train std, y train)

>>> print ('Training accuracy:', lr.score(X train std, y train))
Training accuracy: 1.0

>>> print ('Test accuracy:', lr.score(X test std, y test))

Test accuracy: 1.0

Both training and test accuracies (both 100 percent) indicate that our model
does a perfect job on both datasets. When we access the intercept terms via the
1r.intercept attribute, we can see that the array returns three values:

>>> lr.intercept
array([-1.26338637, -1.21582071, -2.3701035 1)

Since we fit the LogisticRegression object on a multiclass dataset, it uses the One-
versus-Rest (OVR) approach by default, where the first intercept belongs to the
model that fits class 1 versus class 2 and 3, the second value is the intercept of the
model that fits class 2 versus class 1 and 3, and the third value is the intercept of the
model that fits class 3 versus class 1 and 2:

>>> lr.coef
array([[1.24559337, 0.18041967, 0.74328894, -1.16046277, 0. ,
0., 1.1678711, 0., 0., 0., 0., 0.54941931, 2.51017406],
[-1.53720749, -0.38727002, -0.99539203, 0.3651479,
-0.0596352 , 0., 0.66833149, 0., 0., -1.9346134,

[127]

Building Good Training Sets — Data Preprocessing

1.23297955, 0., -2.23135027],

[0.13579227, 0.16837686, 0.35723831, 0., 0., 0.,
-2.43809275, 0., 0., 1.56391408, -0.81933286,
-0.49187817, 0.11)

The weight array that we accessed via the 1r.coef attribute contains three rows of
weight coefficients, one weight vector for each class. Each row consists of 13 weights
where each weight is multiplied by the respective feature in the 13-dimensional
Wine dataset to calculate the net input:

m T
Z=WyX,+ o+ W X =Z, xXw . =wx

m m

% In scikit-learn, w, corresponds to the intercept_and w; with
/<~ j>0 correspond to the values in coef_.

As a result of L1 regularization, which serves as a method for feature selection, we
just trained a model that is robust to the potentially irrelevant features in this dataset.

Strictly speaking, the weight vectors from the previous example are not necessarily
sparse, though, because they contain more non-zero than zero entries. However, we
could enforce sparsity (more zero entries) by further increasing the regularization
strength—that is, choosing lower values for the c parameter.

In the last example on regularization in this chapter, we will vary the regularization
strength and plot the regularization path —the weight coefficients of the different
features for different regularization strengths:

>>> import matplotlib.pyplot as plt

>>> fig = plt.figure()
>>> ax = plt.subplot(111)

>>> colors = ['blue', 'green', 'red', 'cyan',
'magenta', 'yellow', 'black',
'pink', 'lightgreen', 'lightblue',
'gray', 'indigo', 'orange']

>>> weights, params = [], []

>>> for ¢ in np.arange(-4., 6.):

lr = LogisticRegression (penalty='11",
C=10.**c,
random_state=0)

lr.fit (X train_std, y train)

[128]

Chapter 4

weights.append(lr.coef [1])
params.append (10**c)

>>> weights = np.array(weights)

>>> for column, color in zip(range (weights.shape[l]), colors):
plt.plot (params, weights[:, column],
label=df wine.columns[column + 1],

R color=color)
>>> plt.axhline (0, color='black', linestyle='--', linewidth=3)
>>> plt.xlim([10** (-5), 10%**5])
>>> plt.ylabel ('weight coefficient')
>>> plt.xlabel('C")
>>> plt.xscale('log')
>>> plt.legend(loc="'upper left')
>>> ax.legend(loc="upper center',

bbox_ to_anchor=(1.38, 1.03),

ncol=1, fancybox=True)
>>> plt.show()

The resulting plot provides us with further insights into the behavior of L1
regularization. As we can see, all feature weights will be zero if we penalize the
model with a strong regularization parameter (C <0.1); C is the inverse of the
regularization parameter A:

— Aleohal
51 —— Malic &cid
— pah
0 = ——— Alealinity af ash
t — Magnesiem
& Total phenals
g 51 —— Flavanoids
o Manflavansid phanals
£ 104 Preanthacyanins
= Calor Intensity
— Hua
=151 L% — OD2B/OD31S of diluted wines
Praline
=20 4
108 11:1I 1 lﬂr X 1':'.1J 10t 104
C

[129]

Building Good Training Sets — Data Preprocessing

Sequential feature selection algorithms

An alternative way to reduce the complexity of the model and avoid overfitting

is dimensionality reduction via feature selection, which is especially useful for
unregularized models. There are two main categories of dimensionality reduction
techniques: feature selection and feature extraction. Via feature selection, we select
a subset of the original features, whereas in feature extraction, we derive information
from the feature set to construct a new feature subspace.

In this section, we will take a look at a classic family of feature selection algorithms.
In the next chapter, Chapter 5, Compressing Data via Dimensionality Reduction, we
will learn about different feature extraction techniques to compress a dataset onto a
lower-dimensional feature subspace.

Sequential feature selection algorithms are a family of greedy search algorithms
that are used to reduce an initial d-dimensional feature space to a k-dimensional
feature subspace where k<d. The motivation behind feature selection algorithms is
to automatically select a subset of features that are most relevant to the problem, to
improve computational efficiency or reduce the generalization error of the model by
removing irrelevant features or noise, which can be useful for algorithms that don't
support regularization.

A classic sequential feature selection algorithm is Sequential Backward Selection
(SBS), which aims to reduce the dimensionality of the initial feature subspace with
a minimum decay in performance of the classifier to improve upon computational
efficiency. In certain cases, SBS can even improve the predictive power of the model
if a model suffers from overfitting.

Greedy algorithms make locally optimal choices at each stage of

a combinatorial search problem and generally yield a suboptimal

solution to the problem, in contrast to exhaustive search algorithms,
% which evaluate all possible combinations and are guaranteed to find

the optimal solution. However, in practice, an exhaustive search is

often computationally not feasible, whereas greedy algorithms allow

for a less complex, computationally more efficient solution.

[130]

Chapter 4

The idea behind the SBS algorithm is quite simple: SBS sequentially removes
features from the full feature subset until the new feature subspace contains the
desired number of features. In order to determine which feature is to be removed
at each stage, we need to define the criterion function J that we want to minimize.
The criterion calculated by the criterion function can simply be the difference in
performance of the classifier before and after the removal of a particular feature.
Then, the feature to be removed at each stage can simply be defined as the feature
that maximizes this criterion; or in more intuitive terms, at each stage we eliminate
the feature that causes the least performance loss after removal. Based on the
preceding definition of SBS, we can outline the algorithm in four simple steps:

1.

Initialize the algorithm with k=d, where d is the dimensionality of the full
feature space X,.

Determine the feature x~ that maximizes the criterion: x™ =argmax J (X, —x)),
where xe X, .

Remove the feature x~ from the feature set: X, , =X, —x; k=k—-1.
Terminate if k equals the number of desired features; otherwise, go to step 2.

You can find a detailed evaluation of several sequential feature

algorithms in Comparative Study of Techniques for Large-Scale

Feature Selection, F. Ferri, P. Pudil, M. Hatef, and J. Kittler, pages
403-413, 1994.

Unfortunately, the SBS algorithm has not been implemented in scikit-learn yet. But
since it is so simple, let us go ahead and implement it in Python from scratch:

from sklearn.base import clone

from itertools import combinations

import numpy as np

from sklearn.metrics import accuracy score

from sklearn.model_ selection import train test_ split

class SBS():

def init (self, estimator, k_ features,

scoring=accuracy_score,

test size=0.25, random state=1):
self.scoring = scoring
self.estimator = clone(estimator)
self .k features = k features
self.test size = test size

[131]

Building Good Training Sets — Data Preprocessing

self.random state = random state
def fit(self, X, y):

X train, X test, y train, y test = \
train test split(X, y, test size=self.test size,
random_state=self.random state)

dim = X train.shape[1]
self.indices = tuple(range (dim))
self.subsets = [self.indices]
score = self. calc_score(X_train, y train,
X test, y test, self.indices)
self.scores_ = [score]

while dim > self.k features:
scores = []
subsets = []

for p in combinations(self.indices , r=dim - 1):
score = self. calc score(X train, y train,
X test, y test, p)
scores.append (score)
subsets.append (p)

best = np.argmax(scores)
self.indices = subsets[best]
self.subsets .append(self.indices)

dim -= 1

self.scores_.append(scores [best])
self .k score = self.scores [-1]

return self

def transform(self, X):
return X[:, self.indices]

def calc score(self, X train, y train, X test, y test,

indices) :
self.estimator.fit (X train[:, indices], y train)
y pred = self.estimator.predict (X test[:, indices])

score = self.scoring(y test, y pred)
return score

[132]

Chapter 4

In the preceding implementation, we defined the k_features parameter to specify
the desired number of features we want to return. By default, we use the accuracy
score from scikit-learn to evaluate the performance of a model (an estimator for
classification) on the feature subsets. Inside the while loop of the £it method, the
feature subsets created by the itertools.combination function are evaluated and
reduced until the feature subset has the desired dimensionality. In each iteration,
the accuracy score of the best subset is collected in a list, self.scores_, based

on the internally created test dataset x_test. We will use those scores later to
evaluate the results. The column indices of the final feature subset are assigned

to self.indices , which we can use via the transform method to return a new
data array with the selected feature columns. Note that, instead of calculating the
criterion explicitly inside the £it method, we simply removed the feature that is not
contained in the best performing feature subset.

Now, let us see our SBS implementation in action using the KNN classifier from
scikit-learn:

>>> import matplotlib.pyplot as plt
>>> from sklearn.neighbors import KNeighborsClassifier

>>> knn

KNeighborsClassifier (n neighbors=5)

>>> sbs = SBS(knn, k_ features=1)
>>> sbs.fit (X train std, y train)

Although our SBS implementation already splits the dataset into a test and training
dataset inside the £it function, we still fed the training dataset x_train to the
algorithm. The SBS £it method will then create new training subsets for testing
(validation) and training, which is why this test set is also called the validation
dataset. This approach is necessary to prevent our original test set from becoming
part of the training data.

Remember that our SBS algorithm collects the scores of the best feature subset at
each stage, so let us move on to the more exciting part of our implementation and
plot the classification accuracy of the KNN classifier that was calculated on the
validation dataset. The code is as follows:

>>> k_feat = [len(k) for k in sbs.subsets_]

>>> plt.plot (k feat, sbs.scores , marker='o')
>>> plt.ylim([0.7, 1.02])

>>> plt.ylabel ('Accuracy')

>>> plt.xlabel ('Number of features')

>>> plt.grid()

>>> plt.show()

[133]

Building Good Training Sets — Data Preprocessing

As we can see in the following figure, the accuracy of the KNN classifier improved on
the validation dataset as we reduced the number of features, which is likely due to a
decrease in the curse of dimensionality that we discussed in the context of the KNN
algorithm in Chapter 3, A Tour of Machine Learning Classifiers Using scikit-learn. Also,
we can see in the following plot that the classifier achieved 100 percent accuracy for
k={3,7,8 9,10, 11, 12}:

1.00 4

0.75 4

.10 - i T T & =
2 4 & a4 10 12
Number of features

To satisfy our own curiosity, let's see what the smallest feature subset (k=3) that
yielded such a good performance on the validation dataset looks like:

>>> k3 = list (sbs.subsets [10])

>>> print (df _wine.columns[1:] [k3])

Index(['Alcohol', 'Malic acid', 'OD280/0D315 of diluted wines'],
dtype='object')

Using the preceding code, we obtained the column indices of the three-feature
subset from the 10th position in the sbs.subsets_ attribute and returned the
corresponding feature names from the column-index of the pandas Wine bataFrame.

Next let's evaluate the performance of the KNN classifier on the original test set:

>>> knn.fit (X_train std, y train)

>>> print ('Training accuracy:', knn.score (X train std, y train))
Training accuracy: 0.967741935484

>>> print ('Test accuracy:', knn.score(X test std, y test))

Test accuracy: 0.962962962963

[134]

Chapter 4

In the preceding code section, we used the complete feature set and obtained
approximately 97 percent accuracy on the training dataset and approximately

96 percent accuracy on the test, which indicates that our model already generalizes
well to new data. Now, let us use the selected three-feature subset and see how well
KNN performs:

>>> knn.fit (X train std[:, k3], y train)

>>> print ('Training accuracy:',

C. knn.score (X train std[:, k3], y train))
Training accuracy: 0.951612903226

>>> print ('Test accuracy:',

C. knn.score (X _test std[:, k3], y test))
Test accuracy: 0.925925925926

Using less than a quarter of the original features in the Wine dataset, the prediction
accuracy on the test set declined slightly. This may indicate that those three features
do not provide less discriminatory information than the original dataset. However,
we also have to keep in mind that the Wine dataset is a small dataset, which is

very susceptible to randomness—that is, the way we split the dataset into training
and test subsets, and how we split the training dataset further into a training and
validation subset.

While we did not increase the performance of the KNN model by reducing the
number of features, we shrank the size of the dataset, which can be useful in real-
world applications that may involve expensive data collection steps. Also, by
substantially reducing the number of features, we obtain simpler models, which are
easier to interpret.

Feature selection algorithms in scikit-learn
There are many more feature selection algorithms available via
scikit-learn. Those include recursive backward elimination
based on feature weights, tree-based methods to select features
by importance, and univariate statistical tests. A comprehensive
. discussion of the different feature selection methods is beyond the
a scope of this book, but a good summary with illustrative examples
I~ can be found athttp://scikit-learn.org/stable/modules/

feature selection.html. Furthermore, | implemented several
different flavors of sequential feature selection, related to the
simple SBS that we implemented previously. You can find these
implementations in the Python package mlxtend at http://rasbt.
github.io/mlxtend/user guide/feature selection/
SequentialFeatureSelector/

[135]

Building Good Training Sets — Data Preprocessing

Assessing feature importance with
random forests

In previous sections, you learned how to use L1 regularization to zero out irrelevant
features via logistic regression, and use the SBS algorithm for feature selection and
apply it to a KNN algorithm. Another useful approach to select relevant features
from a dataset is to use a random forest, an ensemble technique that we introduced
in Chapter 3, A Tour of Machine Learning Classifiers Using scikit-learn. Using a random
forest, we can measure the feature importance as the averaged impurity decrease
computed from all decision trees in the forest, without making any assumptions
about whether our data is linearly separable or not. Conveniently, the random forest
implementation in scikit-learn already collects the feature importance values for us
so that we can access them via the feature_importances_ attribute after fitting a
RandomForestClassifier. By executing the following code, we will now train a
forest of 10,000 trees on the Wine dataset and rank the 13 features by their respective
importance measures—remember from our discussion in Chapter 3, A Tour of Machine
Learning Classifiers Using scikit-learn that we don't need to use standardized or
normalized features in tree-based models:

>>> from sklearn.ensemble import RandomForestClassifier
>>> feat labels = df wine.columns[1:]

>>> forest = RandomForestClassifier (n estimators=500,
random_ state=1)

>>> forest.fit (X train, y train)

>>> importances = forest.feature_importances_

>>> indices = np.argsort (importances) [::-1]

>>> for f in range (X train.shape[1l]):
print ("%$2d) %-*s %f" % (£ + 1, 30,
feat labels[indices[f]],
importances[indices[f]]))
>>> plt.title('Feature Importance')
>>> plt.bar (range (X train.shape[1l]),
importances [indices],
align='center')

>>> plt.xticks (range (X train.shape[1l]),
feat labels, rotation=90)
>>> plt.xlim([-1, X train.shape[1]])

[136]

Chapter 4

>>> plt.tight layout ()
>>> plt.show()

1) Proline 0.185453
2) Flavanoids 0.174751
3) Color intensity 0.143920
4) 0D280/0D315 of diluted wines 0.136162
5) Alcohol 0.118529
6) Hue 0.058739
7) Total phenols 0.050872
8) Magnesium 0.031357
9) Malic acid 0.025648
10) Proanthocyanins 0.025570
11) Alcalinity of ash 0.022366
12) Nonflavanoid phenols 0.013354
13) Ash 0.013279

After executing the code, we created a plot that ranks the different features in the
Wine dataset by their relative importance; note that the feature importance values
are normalized so that they sum up to 1.0:

Feature Importance

0.15%
0.10

0.05

0,00
u\-ﬂ'\-m_ »oog T ow £ 4
REREEEEREERE
T E 5 = £ £ § = 2 5
= = 4 - o ; 2 =
= 5 5 E Z £ £
- = F =
U .;._‘{'2
n = g
m 2
g =
]
m|m
B
o

[137]

Building Good Training Sets — Data Preprocessing

We can conclude that the proline and flavonoid levels, the color intensity, the
0OD280/0D315 diffraction, and the alcohol concentration of wine are the most
discriminative features in the dataset based on the average impurity decrease in the
500 decision trees. Interestingly, two of the top-ranked features in the plot are also
in the three-feature subset selection from the SBS algorithm that we implemented

in the previous section (alcohol concentration and OD280/0D315 of diluted wines).
However, as far as interpretability is concerned, the random forest technique comes
with an important gotcha that is worth mentioning. If two or more features are
highly correlated, one feature may be ranked very highly while the information of
the other feature(s) may not be fully captured. On the other hand, we don't need

to be concerned about this problem if we are merely interested in the predictive
performance of a model rather than the interpretation of feature importance values.

To conclude this section about feature importance values and random forests, it

is worth mentioning that scikit-learn also implements a selectFromModel object
that selects features based on a user-specified threshold after model fitting, which
is useful if we want to use the RandomForestClassifier as a feature selector and
intermediate step in a scikit-learn pipeline object, which allows us to connect
different preprocessing steps with an estimator, as we will see in Chapter 6, Learning
Best Practices for Model Evaluation and Hyperparameter Tuning. For example, we could
set the threshold to 0.1 to reduce the dataset to the five most important features
using the following code:

>>> from sklearn.feature selection import SelectFromModel

>>> sfm = SelectFromModel (forest, threshold=0.1, prefit=True)
>>> X selected = sfm.transform(X train)

>>> print ('Number of samples that meet this criterion:',

.. X selected.shape[0])

Number of samples that meet this criterion: 124

>>> for f in range (X selected.shapel[l]):
print ("%$2d) %$-*s %f" % (£ + 1, 30,
feat labels[indices[f]],
. importances [indices[f]]))
Proline 0.185453

1)

2) Flavanoids 0.174751
3) Color intensity 0.143920
4) 0OD280/0D315 of diluted wines 0.136162
5) Alcohol 0.118529

[138]

Chapter 4

Summary

We started this chapter by looking at useful techniques to make sure that we handle
missing data correctly. Before we feed data to a machine learning algorithm, we also
have to make sure that we encode categorical variables correctly, and we have seen
how we can map ordinal and nominal feature values to integer representations.

Moreover, we briefly discussed L1 regularization, which can help us to avoid
overfitting by reducing the complexity of a model. As an alternative approach to
removing irrelevant features, we used a sequential feature selection algorithm to
select meaningful features from a dataset.

In the next chapter, you will learn about yet another useful approach to
dimensionality reduction: feature extraction. It allows us to compress features
onto a lower-dimensional subspace, rather than removing features entirely as
in feature selection.

[139]

Compressing Data via
Dimensionality Reduction

In Chapter 4, Building Good Training Sets — Data Preprocessing, you learned about the
different approaches for reducing the dimensionality of a dataset using different
feature selection techniques. An alternative approach to feature selection for
dimensionality reduction is feature extraction. In this chapter, you will learn about
three fundamental techniques that will help us to summarize the information content
of a dataset by transforming it onto a new feature subspace of lower dimensionality
than the original one. Data compression is an important topic in machine learning,
and it helps us to store and analyze the increasing amounts of data that are produced
and collected in the modern age of technology.

In this chapter, we will cover the following topics:

* Principal Component Analysis (PCA) for unsupervised data compression

e Linear Discriminant Analysis (LDA) as a supervised dimensionality
reduction technique for maximizing class separability

* Nonlinear dimensionality reduction via Kernel Principal Component
Analysis (KPCA)

[141]

Compressing Data via Dimensionality Reduction

Unsupervised dimensionality reduction
via principal component analysis

Similar to feature selection, we can use different feature extraction techniques to
reduce the number of features in a dataset. The difference between feature selection
and feature extraction is that while we maintain the original features when we
used feature selection algorithms, such as sequential backward selection, we use
feature extraction to transform or project the data onto a new feature space. In the
context of dimensionality reduction, feature extraction can be understood as an
approach to data compression with the goal of maintaining most of the relevant
information. In practice, feature extraction is not only used to improve storage space
or the computational efficiency of the learning algorithm, but can also improve the
predictive performance by reducing the curse of dimensionality—especially if we are
working with non-regularized models.

The main steps behind principal component
analysis

In this section, we will discuss PCA, an unsupervised linear transformation
technique that is widely used across different fields, most prominently for feature
extraction and dimensionality reduction. Other popular applications of PCA include
exploratory data analyses and de-noising of signals in stock market trading, and the
analysis of genome data and gene expression levels in the field of bioinformatics.

PCA helps us to identify patterns in data based on the correlation between

features. In a nutshell, PCA aims to find the directions of maximum variance in
high-dimensional data and projects it onto a new subspace with equal or fewer
dimensions than the original one. The orthogonal axes (principal components) of the
new subspace can be interpreted as the directions of maximum variance given the
constraint that the new feature axes are orthogonal to each other, as illustrated in the
following figure:

[142]

Chapter 5

In the preceding figure, x, and x, are the original feature axes, and PC1 and PC2 are
the principal components.

If we use PCA for dimensionality reduction, we construct a d x kK —dimensional
transformation matrix W that allows us to map a sample vector x onto a new
k—dimensional feature subspace that has fewer dimensions than the original d-
dimensional feature space:

x=[x,x,,...,x,], xeR’
L xW, WeR™
z:[zl,zz,...,zk], zeR*

As a result of transforming the original d-dimensional data onto this new
k-dimensional subspace (typically k << d), the first principal component will have
the largest possible variance, and all consequent principal components will have
the largest variance given the constraint that these components are uncorrelated
(orthogonal) to the other principal components—even if the input features are
correlated, the resulting principal components will be mutually orthogonal
(uncorrelated). Note that the PCA directions are highly sensitive to data scaling, and
we need to standardize the features prior to PCA if the features were measured on
different scales and we want to assign equal importance to all features.

[143]

Compressing Data via Dimensionality Reduction

Before looking at the PCA algorithm for dimensionality reduction in more detail,
let's summarize the approach in a few simple steps:

1
2.
3.
4

Standardize the d-dimensional dataset.
Construct the covariance matrix.
Decompose the covariance matrix into its eigenvectors and eigenvalues.

Sort the eigenvalues by decreasing order to rank the corresponding
eigenvectors.

Select k eigenvectors which correspond to the k largest eigenvalues, where k
is the dimensionality of the new feature subspace (k< d).

Construct a projection matrix W from the "top" k eigenvectors.

Transform the d-dimensional input dataset X using the projection matrix W
to obtain the new k-dimensional feature subspace.

In the following sections, we will perform a PCA step by step, using Python as a
learning exercise. Then, we will see how to perform a PCA more conveniently using
scikit-learn.

Extracting the principal components step by

step

In this subsection, we will tackle the first four steps of a PCA:

1
2.
3.
4.

Standardizing the data.

Constructing the covariance matrix.

Obtaining the eigenvalues and eigenvectors of the covariance matrix.
Sorting the eigenvalues by decreasing order to rank the eigenvectors.

First, we will start by loading the Wine dataset that we have been working with in
Chapter 4, Building Good Training Sets — Data Preprocessing:

>>> import pandas as pd

df wine = pd.read csv('https://archive.ics.uci.edu/ml/"'

'machine-learning-databases/wine/wine.data',
header=None)

[144]

Chapter 5

You can find a copy of the Wine dataset (and all other datasets used
in this book) in the code bundle of this book, which you can use if
you are working offline or the UCI server at https: //archive.
ics.uci.edu/ml/machine-learning-databases/wine/
wine.data is temporarily unavailable. For instance, to load the Wine
dataset from a local directory, you can replace the following line:

%‘ df = pd.read csv('https://archive.ics.uci.edu/ml/"

'machine-learning-databases/wine/wine.data’',
header=None)

Replace it with this:
df = pd.read csv('your/local/path/to/wine.data’,
header=None)

Next, we will process the Wine data into separate training and test sets—using 70
percent and 30 percent of the data, respectively—and standardize it to unit variance:

>>> from sklearn.model selection import train test split

>>> X, y = df wine.iloc[:, 1:].values, df wine.iloc[:, 0].values
>>> X train, X test, y train, y test = \
>>> train test split(X, y, test size=0.3,

stratify=y,

random_ state=0)
>>> # standardize the features
>>> from sklearn.preprocessing import StandardScaler
>>> sc = StandardScaler ()
>>> X train std = sc.fit transform(X train)
>>> X test std = sc.transform(X test)

After completing the mandatory preprocessing by executing the preceding code,
let's advance to the second step: constructing the covariance matrix. The symmetric
d x d-dimensional covariance matrix, where d is the number of dimensions in the
dataset, stores the pairwise covariances between the different features. For example,
the covariance between two features x; and x, on the population level can be
calculated via the following equation:

7=y Sl))

[145]

Compressing Data via Dimensionality Reduction

Here, 4, and 4, are the sample means of features j and k, respectively. Note that the
sample means are zero if we standardized the dataset. A positive covariance between
two features indicates that the features increase or decrease together, whereas a
negative covariance indicates that the features vary in opposite directions. For
example, the covariance matrix of three features can then be written as follows (note
that 2 stands for the Greek uppercase letter sigma, which is not to be confused with
the sum symbol):

2
O, 0O, Oy

_ 2
Z_ 0, 0, Opn

2
C&l CHZ C%

The eigenvectors of the covariance matrix represent the principal components (the
directions of maximum variance), whereas the corresponding eigenvalues will define
their magnitude. In the case of the Wine dataset, we would obtain 13 eigenvectors
and eigenvalues from the 13 x 13-dimensional covariance matrix.

Now, for our third step, let's obtain the eigenpairs of the covariance matrix. As we
remember from our introductory linear algebra classes, an eigenvector v satisfies the
following condition:

Sv=Av

Here, A is ascalar: the eigenvalue. Since the manual computation of eigenvectors and
eigenvalues is a somewhat tedious and elaborate task, we will use the 1inalg.eig
function from NumPYy to obtain the eigenpairs of the Wine covariance matrix:

>>> import numpy as np
>>> cov_mat = np.cov(X train std.T)
>>> eigen vals, eigen vecs = np.linalg.eig(cov_mat)

°

>>> print ('\nEigenvalues \n%s' % eigen vals)

Eigenvalues

[4.84274532 2.41602459 1.54845825 0.96120438 0.84166161
0.6620634 0.51828472 0.34650377 0.3131368 0.10754642
0.21357215 0.15362835 0.1808613]

Using the numpy . cov function, we computed the covariance matrix of the
standardized training dataset. Using the 1inalg.eig function, we performed
the eigendecomposition, which yielded a vector (eigen vals) consisting of
13 eigenvalues and the corresponding eigenvectors stored as columns in a

13 x 13-dimensional matrix (eigen vecs).

[146]

Chapter 5

The numpy.linalg.eig function was designed to operate on both
symmetric and non-symmetric square matrices. However, you may
find that it returns complex eigenvalues in certain cases.

%i‘ A related function, numpy . 1inalg.eigh, has been implemented to

decompose Hermetian matrices, which is a numerically more stable
approach to work with symmetric matrices such as the covariance

matrix; numpy . Linalg.eigh always returns real eigenvalues.

Total and explained variance

Since we want to reduce the dimensionality of our dataset by compressing it onto

a new feature subspace, we only select the subset of the eigenvectors (principal
components) that contains most of the information (variance). The eigenvalues define
the magnitude of the eigenvectors, so we have to sort the eigenvalues by decreasing

magnitude; we are interested in the top k eigenvectors based on the values of

their corresponding eigenvalues. But before we collect those k most informative
eigenvectors, let us plot the variance explained ratios of the eigenvalues. The variance

explained ratio of an eigenvalue /1J. is simply the fraction of an eigenvalue /1/. and

the total sum of the eigenvalues:

A

J

:E:iﬂ)%

Using the NumPy cumsum function, we can then calculate the cumulative sum of

explained variances, which we will then plot via Matplotlib's step function:

>>> tot = sum(eigen vals)
>>> var exp = [(1 / tot) for i in
sorted(eigen vals, reverse=True)]
>>> cum_var exp = np.cumsum(var exp)
>>> import matplotlib.pyplot as plt
>>> plt.bar(range(1l,14), var exp, alpha=0.5, align='center',
label='individual explained variance')
>>> plt.step(range(1l,14), cum var exp, where='mid',
label="'cumulative explained variance')
>>> plt.ylabel ('Explained variance ratio!')
>>> plt.xlabel ('Principal component index')
>>> plt.legend(loc="'best')
>>> plt.show()

[147]

Compressing Data via Dimensionality Reduction

The resulting plot indicates that the first principal component alone accounts for
approximately 40 percent of the variance. Also, we can see that the first two principal
components combined explain almost 60 percent of the variance in the dataset:

1.0 4
g 081
2
o
W
S 0.6 1 : : .
= —— cumulative explained variance
_z individual explained vanance
£ 044
L4
4
w

0.2 4

0.0 T T T T T T

1] 2 4 G 8 10 12 14
Principal component index

Although the explained variance plot reminds us of the feature importance values
that we computed in Chapter 4, Building Good Training Sets — Data Preprocessing, via
random forests, we should remind ourselves that PCA is an unsupervised method,
which means that information about the class labels is ignored. Whereas a random
forest uses the class membership information to compute the node impurities,
variance measures the spread of values along a feature axis.

Feature transformation

After we have successfully decomposed the covariance matrix into eigenpairs, let's
now proceed with the last three steps to transform the Wine dataset onto the new
principal component axes. The remaining steps we are going to tackle in this section
are the following ones:

e Select k eigenvectors, which correspond to the k largest eigenvalues, where k
is the dimensionality of the new feature subspace (k < d).
* Construct a projection matrix W from the "top" k eigenvectors.

e Transform the d-dimensional input dataset X using the projection matrix W
to obtain the new k-dimensional feature subspace.

[148]

Chapter 5

Or, in less technical terms, we will sort the eigenpairs by descending order of the
eigenvalues, construct a projection matrix from the selected eigenvectors, and use the
projection matrix to transform the data onto the lower-dimensional subspace.

We start by sorting the eigenpairs by decreasing order of the eigenvalues:

>>> # Make a list of (eigenvalue, eigenvector) tuples
>>> eigen pairs = [(np.abs(eigen vals[i]), eigen vecs[:, il)
for i in range(len(eigen vals))]
>>> # Sort the (eigenvalue, eigenvector) tuples from high to low
>>> eigen pairs.sort (key=lambda k: k[0], reverse=True)

Next, we collect the two eigenvectors that correspond to the two largest eigenvalues,
to capture about 60 percent of the variance in this dataset. Note that we only chose
two eigenvectors for the purpose of illustration, since we are going to plot the data
via a two-dimensional scatter plot later in this subsection. In practice, the number of
principal components has to be determined by a trade-off between computational
efficiency and the performance of the classifier:

>>> w = np.hstack((eigen pairs([0] [1] [:, np.newaxis],
eigen pairs([1] [1] [:, np.newaxis]))
>>> print ('Matrix W:\n',6 w)
Matrix W:
[[-0.13724218 0.50303478]

[0.24724326 0.16487119]
[-0.02545159 0.24456476]
[0.20694508 -0.11352904]
[-0.15436582 0.28974518]
[-0.39376952 0.05080104]
[-0.41735106 -0.02287338]
[0.30572896 0.09048885]
[-0.30668347 0.00835233]
[0.07554066 0.54977581]
[-0.32613263 -0.20716433]
[-0.36861022 -0.24902536]
[-0.29669651 0.38022942]]

By executing the preceding code, we have created a 13 x 2-dimensional projection
matrix W from the top two eigenvectors.

[149]

Compressing Data via Dimensionality Reduction

Depending on which version of NumPy and LAPACK you are using, you
may obtain the matrix W with its signs flipped. Please note that this is not
an issue; if v is an eigenvector of a matrix > , wWe have:

Sy=Ay

Here A isour eigenvalue, and - A is also an eigenvector that has the
same eigenvalue, since:

Y(v)=vX=-Av=1-(-v)

Using the projection matrix, we can now transform a sample x (represented as a

1 x 13-dimensional row vector) onto the PCA subspace (the principal components
one and two) obtaining x’, now a two-dimensional sample vector consisting of two
new features:

x'=xW

>>> X train std[0] .dot (w)
array ([2.38299011, 0.45458499])

Similarly, we can transform the entire 124 x 13-dimensional training dataset onto the
two principal components by calculating the matrix dot product:

X'=XWw

>>> X train pca = X train std.dot (w)

Lastly, let us visualize the transformed Wine training set, now stored as an
124 x 2-dimensional matrix, in a two-dimensional scatterplot:

>>> colors = ['r', 'b', 'g'l]
>>> markers = ['s', 'x', 'o']
>>> for 1, ¢, m in zip(np.unique(y train), colors, markers):
plt.scatter (X train pcaly train==1, 0],
X train pcaly train==1, 1],
.. c=c, label=1, marker=m)
>>> plt.xlabel ('PC 1')
>>> plt.ylabel ('PC 2"')
>>> plt.legend(loc="'lower left')
>>> plt.show()

[150]

Chapter 5

As we can see in the resulting plot, the data is more spread along the x-axis—the
first principal component — than the second principal component (y-axis), which

is consistent with the explained variance ratio plot that we created in the previous
subsection. However, we can intuitively see that a linear classifier will likely be able
to separate the classes well:

3 »
| " "‘.q
L] | I] a®
21 l-“
g ®m [] »
e .
1 e .
o :.ll. inyp & .‘. s ?
. i n_B] = L 8
g wm = L x %X =
X, o
-1 1 X x ®
A x X ox X o
R 10 x *
24 ™ 1 o xxx b
x 2 o @
31 8 2 ™
-4 -2 0 F] 4
PC1

Although we encoded the class label information for the purpose of illustration in
the preceding scatter plot, we have to keep in mind that PCA is an unsupervised
technique that doesn't use any class label information.

Principal component analysis in scikit-learn

Although the verbose approach in the previous subsection helped us to

follow the inner workings of PCA, we will now discuss how to use the pca class
implemented in scikit-learn. The pca class is another one of scikit-learn's transformer
classes, where we first fit the model using the training data before we transform

both the training data and the test dataset using the same model parameters. Now,
let's use the pca class from scikit-learn on the Wine training dataset, classify the
transformed samples via logistic regression, and visualize the decision regions via
the plot decision region function that we defined in Chapter 2, Training Simple
Machine Learning Algorithms for Classification:

from matplotlib.colors import ListedColormap
def plot decision regions(X, y, classifier, resolution=0.02):

setup marker generator and color map

[151]

Compressing Data via Dimensionality Reduction

markers = ('s', 'x', 'o', '~rv, 'v')
colors = ('red', 'blue', 'lightgreen', 'gray',6 'cyan')

cmap = ListedColormap (colors|[:len(np.unique(y))])

plot the decision surface

x1 min, x1 max = X[:, 0] .min() - 1, X[:, 0] .max() + 1
x2 min, x2 max = X[:, 1].min() - 1, X[:, 1] .max() + 1
xx1, xx2 = np.meshgrid(np.arange(xl min, x1 max, resolution),

np.arange (x2 min, x2 max, resolution))
Z = classifier.predict (np.array([xxl.ravel (), xx2.ravel()]).T)
Z = Z.reshape (xx1.shape)
plt.contourf (xx1, xx2, Z, alpha=0.4, cmap=cmap)
plt.xlim(xxl.min(), xx1l.max())
plt.ylim(xx2.min(), xx2.max())

plot class samples
for idx, cl in enumerate (np.unique(y)) :

plt.scatter (x=X[y == cl, 0],
y:X[y == Cl, 1] ’
alpha=0.6,

c=cmap (idx) ,
edgecolor="'black"',
marker=markers [idx],
label=cl)

>>> from sklearn.linear model import LogisticRegression
>>> from sklearn.decomposition import PCA

>>> pca = PCA(n_components=2)

>>> lr = LogisticRegression()

>>> X train pca = pca.fit transform(X train std)

>>> X test pca = pca.transform(X test std)

>>> lr.fit (X_train pca, y train)

>>> plot decision regions (X train pca, y train, classifier=1r)
>>> plt.xlabel ('PC 1'")

>>> plt.ylabel ('PC 2"')

>>> plt.legend(loc="'lower left')

>>> plt.show()

[152]

Chapter 5

By executing the preceding code, we should now see the decision regions for the
training data reduced to two principal component axes:

PC 2

When we compare PCA projections via scikit-learn with our own PCA
implementation, it can happen that the resulting plots are mirror images of each
other. Note that this is not due to an error in either of those two implementations,
but the reason for this difference is that, depending on the eigensolver, eigenvectors
can have either negative or positive signs. Not that it matters, but we could simply
revert the mirror image by multiplying the data by -1 if we wanted to; note that
eigenvectors are typically scaled to unit length 1. For the sake of completeness, let's
plot the decision regions of the logistic regression on the transformed test dataset to
see if it can separate the classes well:

>>> plot_decision regions (X test pca, y test, classifier=1r)
>>> plt.xlabel ('PC1l"')

>>> plt.ylabel ('PC2")

>>> plt.legend(loc="'lower left')

>>> plt.show()

[153]

Compressing Data via Dimensionality Reduction

After we plotted the decision regions for the test set by executing the preceding code,
we can see that logistic regression performs quite well on this small two-dimensional
feature subspace and only misclassifies very few samples in the test dataset:

PC1

If we are interested in the explained variance ratios of the different principal
components, we can simply initialize the pca class with the n_components parameter
set to None, so all principal components are kept and the explained variance ratio can
then be accessed via the explained variance ratio_ attribute:

>>> pca = PCA(n_components=None)

>>> X train pca = pca.fit transform(X train std)

>>> pca.explained variance ratio_

array([0.36951469, 0.18434927, 0.11815159, 0.07334252,
0.06422108, 0.05051724, 0.03954654, 0.02643918, 0.02389319,
0.01629614, 0.01380021, 0.01172226, 0.00820609])

Note that we set n_components=None when we initialized the pca class so that
it will return all principal components in a sorted order instead of performing a
dimensionality reduction.

[154]

Chapter 5

Supervised data compression via linear
discriminant analysis

Linear Discriminant Analysis (LDA) can be used as a technique for feature
extraction to increase the computational efficiency and reduce the degree of
overfitting due to the curse of dimensionality in non-regularized models.

The general concept behind LDA is very similar to PCA. Whereas PCA attempts to
find the orthogonal component axes of maximum variance in a dataset, the goal in
LDA is to find the feature subspace that optimizes class separability. In the following
sections, we will discuss the similarities between LDA and PCA in more detail and
walk through the LDA approach step by step.

Principal component analysis versus linear
discriminant analysis

Both PCA and LDA are linear transformation techniques that can be used to reduce
the number of dimensions in a dataset; the former is an unsupervised algorithm,
whereas the latter is supervised. Thus, we might intuitively think that LDA is a
superior feature extraction technique for classification tasks compared to PCA.
However, A.M. Martinez reported that preprocessing via PCA tends to result in
better classification results in an image recognition task in certain cases, for instance
if each class consists of only a small number of samples (PCA Versus LDA, A. M.
Martinez and A. C. Kak, IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(2): 228-233, 2001).

LDA is sometimes also called Fisher's LDA. Ronald A. Fisher initially
formulated Fisher's Linear Discriminant for two-class classification
problems in 1936 (The Use of Multiple Measurements in Taxonomic
. Problems, R. A. Fisher, Annals of Eugenics, 7(2): 179-188, 1936). Fisher's
a linear discriminant was later generalized for multi-class problems by
L C. Radhakrishna Rao under the assumption of equal class covariances
and normally distributed classes in 1948, which we now call LDA
(The Utilization of Multiple Measurements in Problems of Biological
Classification, C. R. Rao, Journal of the Royal Statistical Society. Series B
(Methodological), 10(2): 159-203, 1948).

[155]

Compressing Data via Dimensionality Reduction

The following figure summarizes the concept of LDA for a two-class problem.
Samples from class 1 are shown as circles, and samples from class 2 are shown
as Ccrosses:

o2 4

|
OG a) + +

/
Z 1|15 +
G .
\ o a + 4 T
4] LR
\ o DD T+ 4
O i

\| Lo
= =i " 01
LYY i

A linear discriminant, as shown on the x-axis (LD 1), would separate the two
normal distributed classes well. Although the exemplary linear discriminant shown
on the y-axis (LD 2) captures a lot of the variance in the dataset, it would fail as a
good linear discriminant since it does not capture any of the class-discriminatory
information.

One assumption in LDA is that the data is normally distributed. Also, we assume
that the classes have identical covariance matrices and that the features are
statistically independent of each other. However, even if one or more of those
assumptions are (slightly) violated, LDA for dimensionality reduction can still
work reasonably well (Pattern Classification 2nd Edition, R. O. Duda, P. E. Hart,
and D. G. Stork, New York, 2001).

The inner workings of linear discriminant
analysis

Before we dive into the code implementation, let's briefly summarize the main steps
that are required to perform LDA:

1. Standardize the d-dimensional dataset (d is the number of features).

2. For each class, compute the d-dimensional mean vector.

3. Construct the between-class scatter matrix .S, and the within-class scatter
matrix S, .

[156]

Chapter 5

4. Compute the eigenvectors and corresponding eigenvalues of the matrix
S.'S,.

5. Sort the eigenvalues by decreasing order to rank the corresponding
eigenvectors.

6. Choose the k eigenvectors that correspond to the k largest eigenvalues to
construct a d x k -dimensional transformation matrix W; the eigenvectors are
the columns of this matrix.

7. Project the samples onto the new feature subspace using the transformation
matrix W.

As we can see, LDA is quite similar to PCA in the sense that we are decomposing
matrices into eigenvalues and eigenvectors, which will form the new lower-
dimensional feature space. However, as mentioned before, LDA takes class label
information into account, which is represented in the form of the mean vectors
computed in step 2. In the following sections, we will discuss these seven steps in
more detail, accompanied by illustrative code implementations.

Computing the scatter matrices

Since we already standardized the features of the Wine dataset in the PCA section
at the beginning of this chapter, we can skip the first step and proceed with the
calculation of the mean vectors, which we will use to construct the within-class
scatter matrix and between-class scatter matrix, respectively. Each mean vector m,

stores the mean feature value £,, with respect to the samples of class i:

1 <

m=r3x,
ni xeD;

This results in three mean vectors:
/J i,alcohol
/’li malic acid .
m=|""" ie{1,2,3)
L ﬂi,proline i

>>> np.set printoptions (precision=4)
>>> mean_vecs = []
>>> for label in range(1l,4):

[157]

Compressing Data via Dimensionality Reduction

mean vecs.append (np.mean (
X train stdly train==label], axis=0))
print ('MV %s: %$s\n' % (label, mean vecs[label-1]))
MV 1: [0.9066 -0.3497 0.3201 -0.7189 0.5056 0.8807 0.9589 -0.5516
0.5416 0.2338 0.5897 0.6563 1.2075]

MV 2: [-0.8749 -0.2848 -0.3735 0.3157 -0.3848 -0.0433 0.0635 -0.0946
0.0703 -0.8286 0.3144 0.3608 -0.7253]

MV 3: [0.1992 0.866 0.1682 0.4148 -0.0451 -1.0286 -1.2876 0.8287
-0.7795 0.9649 -1.209 -1.3622 -0.4013]

Using the mean vectors, we can now compute the within-class scatter matrix S, :
S, = ZSi
i=1

This is calculated by summing up the individual scatter matrices S, of each
individual class i:

S = i(x—mi)(x—mi)T

xeD;

>>> d = 13 # number of features
>>> S W = np.zeros((d, d))
>>> for label, mv in zip(range(l, 4), mean_ vecs):
class scatter = np.zeros((d, d))
>>> for row in X train stdl[y train == label]:
row, mv = row.reshape(d, 1), mv.reshape(d, 1)
class scatter += (row - mv).dot((row - mv).T)
S W += class_scatter
>>> print ('Within-class scatter matrix: %$sx%s' % (
.. S W.shape[0], S W.shapel1l]))
Within-class scatter matrix: 13x13

The assumption that we are making when we are computing the scatter matrices
is that the class labels in the training set are uniformly distributed. However, if we
print the number of class labels, we see that this assumption is violated:

>>> print ('Class label distribution: %s'

c.. % np.bincount (y train) [1:])
Class label distribution: [41 50 33]

[158]

Chapter 5

Thus, we want to scale the individual scatter matrices S, before we sum them
up as scatter matrix S, . When we divide the scatter matrices by the number of
class-samples #,, we can see that computing the scatter matrix is in fact the same as

computing the covariance matrix 2; —the covariance matrix is a normalized version
of the scatter matrix:

>>> d = 13 # number of features

>>> S W = np.zeros((d, d))

>>> for label,mv in zip(range(l, 4), mean vecs):
class_scatter = np.cov (X train std[y train==label].T)
S W += class_scatter

>>> print ('Scaled within-class scatter matrix: %sx%s'

R % (S_W.shapel[0], S W.shapel[l]))

Scaled within-class scatter matrix: 13x13

After we computed the scaled within-class scatter matrix (or covariance matrix), we
can move on to the next step and compute the between-class scatter matrix S5 :

S, = Zc:nl. (m,—m)(m,—m)"

i=1

Here, m is the overall mean that is computed, including samples from all classes:

>>> mean overall = np.mean (X train std, axis=0)
>>> d = 13 # number of features
>>> S B = np.zeros((d, d))
>>> for i, mean vec in enumerate(mean vecs):
n = X train[y train == 1 + 1, :].shapel[0]
mean vec = mean vec.reshape(d, 1) # make column vector
mean overall = mean overall.reshape(d, 1)
S B += n * (mean vec - mean overall) .dot (
(mean_vec - mean overall) .T)
>>> print ('Between-class scatter matrix: %$sx%s' % (
S B.shape[0], S B.shape[1l]))

[159]

Compressing Data via Dimensionality Reduction

Selecting linear discriminants for the new
feature subspace

The remaining steps of the LDA are similar to the steps of the PCA. However,
instead of performing the eigendecomposition on the covariance matrix, we solve the
generalized eigenvalue problem of the matrix S;‘SB:

>>> eigen vals, eigen vecs =\
np.linalg.eig(np.linalg.inv(S_W) .dot (S_B))

After we computed the eigenpairs, we can now sort the eigenvalues in descending
order:

>>> eigen pairs = [(np.abs(eigen vals[i]), eigen vecs[:,1i])
for i in range(len(eigen vals))]
>>> eigen pairs = sorted(eigen pairs,
key=lambda k: k[0], reverse=True)
>>> print ('Eigenvalues in descending order:\n')
>>> for eigen val in eigen pairs:
print (eigen val([0])

Eigenvalues in descending order:

349.617808906
172.76152219
.78531345125e-14
.11739844822e-14
.51646188942e-14
.516461889%42e-14
.35795671405e-14
.35795671405e-14
.58776037165e-15
.90603998447e-15
.90603998447e-15
.25644197857e-15
.0

w

oN Ul Ul 9 HE P BEDN

In LDA, the number of linear discriminants is at most c—1, where ¢ is the number
of class labels, since the in-between scatter matrix S, is the sum of ¢ matrices with
rank 1 or less. We can indeed see that we only have two nonzero eigenvalues (the
eigenvalues 3-13 are not exactly zero, but this is due to the floating point arithmetic
in NumPy).

[160]

Chapter 5

Note that in the rare case of perfect collinearity (all aligned sample

points fall on a straight line), the covariance matrix would have

rank one, which would result in only one eigenvector with a
nonzero eigenvalue.

To measure how much of the class-discriminatory information is captured by the
linear discriminants (eigenvectors), let's plot the linear discriminants by decreasing
eigenvalues similar to the explained variance plot that we created in the PCA
section. For simplicity, we will call the content of class-discriminatory information
discriminability:

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

tot = sum(eigen vals.real)

discr = [(1 / tot) for i in sorted(eigen vals.real, reverse=True)]

cum _discr = np.cumsum(discr)

plt.bar(range(l, 14), discr, alpha=0.5, align='center',
label='individual "discriminability"')

plt.step(range(1l, 14), cum discr, where='mid',
label="'cumulative "discriminability"')

plt.ylabel ('"discriminability" ratio')

plt.xlabel ('Linear Discriminants')

plt.ylim([-0.1, 1.1])

plt.legend(loc="best')

plt.show ()

As we can see in the resulting figure, the first two linear discriminants alone capture
100 percent of the useful information in the Wine training dataset:

1.0 4
@ 0.8 4
B
2 0.6
- — cumulative "discriminability®
E individual "discriminability”
E 0.4 4
=
&
h=]
LR

0.0 1

0 2 4 & 8 10 12 14
Linear Discriminants

[161]

Compressing Data via Dimensionality Reduction

Let's now stack the two most discriminative eigenvector columns to create the
transformation matrix W:

>>> w = np.hstack((eigen pairs[0] [1] [:, np.newaxis].real,
eigen pairs[1] [1] [:, np.newaxis].real))
>>> print ('Matrix W:\n',6 w)
Matrix W:
[[-0.1481 -0.4092]
[0.0908 -0.1577]
.0168 -0.3537]
.1484 0.3223]
.0163 -0.0817]
.1913 0.0842]
.7338 0.2823]
.075 -0.0102]
.0018 0.0907]
.294 -0.2152]
.0328 0.2747]
.3547 -0.0124]
.3915 -0.5958]1

1
O O O O O O O O o o o

Projecting samples onto the new feature
space

Using the transformation matrix W that we created in the previous subsection, we
can now transform the training dataset by multiplying the matrices:

X'=Xw
>>> X train lda = X train_std.dot (w)
>>> colors = ['r', 'b', 'g']
>>> markers = ['s', 'x', 'o'l]

>>> for 1, ¢, m in zip(np.unique(y train), colors, markers):

plt.scatter(X_train_ldaly train==1, 0],

X train ldaly train==1, 1] * (-1),

. c=c, label=1, marker=m)
>>> plt.xlabel ('LD 1')
>>> plt.ylabel ('LD 2"')
>>> plt.legend(loc="'lower right')
>>> plt.show()

[162]

Chapter 5

As we can see in the resulting plot, the three wine classes are now perfectly linearly
separable in the new feature subspace:

1 m
Y | .y l-l
B L]
11 e .l' 'i‘_
®
. ﬂJi.hHr = L] ‘t‘ :
] L L]
0] " . s
e 'y
-]
*x%x x?:
x X ® x x
21 e .
-4 » 2
-3 * e 3
-2 -1 0 1 2
LD1

LDA via scikit-learn

The step-by-step implementation was a good exercise to understand the inner
workings of an LDA and understand the differences between LDA and PCA. Now,
let's look at the n.pa class implemented in scikit-learn:

>>> from sklearn.discriminant analysis import
LinearDiscriminantAnalysis as LDA

>>> lda = LDA(n_components=2)

>>> X train lda = lda.fit transform(X train std, y train)

Next, let's see how the logistic regression classifier handles the lower-dimensional
training dataset after the LDA transformation:

>>> lr = LogisticRegression()

>>> lr = 1lr.fit(X_train lda, y train)

>>> plot decision regions (X train lda, y train, classifier=1r)
>>> plt.xlabel ('LD 1')

>>> plt.ylabel ('LD 2')

>>> plt.legend(loc="'lower left')

>>> plt.show()

[163]

Compressing Data via Dimensionality Reduction

Looking at the resulting plot, we see that the logistic regression model misclassifies
one of the samples from class 2:

Lo 1

By lowering the regularization strength, we could probably shift the decision
boundaries so that the logistic regression model classifies all samples in the training
dataset correctly. However, and more importantly, let us take a look at the results on
the test set:

>>>

>>>

>>>

>>>

>>>

>>>

X test_lda = lda.transform(X_ test_ std)

plot decision regions (X test lda, y test, classifier=1lr)
plt.xlabel ('LD 1'")

plt.ylabel ('LD 2'")

plt.legend(loc="'lower left')

plt.show ()

[164]

Chapter 5

As we can see in the following plot, the logistic regression classifier is able to get a
perfect accuracy score for classifying the samples in the test dataset by only using a
two-dimensional feature subspace instead of the original 13 Wine features:

Using kernel principal component
analysis for nonlinear mappings

Many machine learning algorithms make assumptions about the linear separability
of the input data. You learned that the perceptron even requires perfectly linearly
separable training data to converge. Other algorithms that we have covered so far
assume that the lack of perfect linear separability is due to noise: Adaline, logistic
regression, and the (standard) SVM to just name a few.

[165]

Compressing Data via Dimensionality Reduction

However, if we are dealing with nonlinear problems, which we may encounter
rather frequently in real-world applications, linear transformation techniques for
dimensionality reduction, such as PCA and LDA, may not be the best choice. In

this section, we will take a look at a kernelized version of PCA, or KPCA, which
relates to the concepts of kernel SVM that we remember from Chapter 3, A Tour of
Machine Learning Classifiers Using scikit-learn. Using kernel PCA, we will learn how to
transform data that is not linearly separable onto a new, lower-dimensional subspace
that is suitable for linear classifiers.

& &
CICIQD .a"‘f’ =)
GD o © -~ + oo 2 g5 o©
) o -
¥, oo © f_,.++++ x 0 FrEN ©
b1
o000 o + +++ o ll‘r++++ +'I:- o
” + +4 4t 4+ o
A+ + + o Ayttt
2 * ot o
o + + D" ™
Xy - Xy -

Kernel functions and the kernel trick

As we remember from our discussion about kernel SVMs in Chapter 3, A Tour of
Machine Learning Classifiers Using scikit-learn, we can tackle nonlinear problems

by projecting them onto a new feature space of higher dimensionality where the
classes become linearly separable. To transform the samples xeR? onto this higher
k-dimensional subspace, we defined a nonlinear mapping function ¢ :

R >R (k>>d)

[166]

Chapter 5

We can think of ¢ as a function that creates nonlinear combinations of the original
features to map the original d-dimensional dataset onto a larger, k-dimensional
feature space. For example, if we had a feature vector xeR? (x is a column vector
consisting of d features) with two dimensions (d =2), a potential mapping onto a
3D-space could be:

X :[xl, xz]T

.

2 2 r
z :[xl A 2%, X, ,xz]

In other words, we perform a nonlinear mapping via kernel PCA that transforms

the data onto a higher-dimensional space. We then use standard PCA in this
higher-dimensional space to project the data back onto a lower-dimensional space
where the samples can be separated by a linear classifier (under the condition that
the samples can be separated by density in the input space). However, one downside
of this approach is that it is computationally very expensive, and this is where we
use the kernel trick. Using the kernel trick, we can compute the similarity between
two high-dimension feature vectors in the original feature space.

Before we proceed with more details about the kernel trick to tackle this
computationally expensive problem, let us think back to the standard PCA approach
that we implemented at the beginning of this chapter. We computed the covariance
between two features k and j as follows:

Y C Ey

[167]

Compressing Data via Dimensionality Reduction

Since the standardizing of features centers them at mean zero, for instance, 4, =0
and &, =0, we can simplify this equation as follows:

1 N i i

Note that the preceding equation refers to the covariance between two features; now,
let us write the general equation to calculate the covariance matrix 2 :

IS0 ey
Z—n;x X

Bernhard Scholkopf generalized this approach (Kernel principal component analysis,
B. Scholkopf, A. Smola, and K.R. Muller, pages 583-588, 1997) so that we can replace
the dot products between samples in the original feature space with the nonlinear
feature combinations via ¢:

>3 p(x oy

To obtain the eigenvectors—the principal components—from this covariance matrix,
we have to solve the following equation:

Sv=Av

[168]

Chapter 5

Here, A and v are the eigenvalues and eigenvectors of the covariance matrix 2, and
a can be obtained by extracting the eigenvectors of the kernel (similarity) matrix K,

as we will see in the next paragraphs.

x k-dimensional matrix:
IS0 OV — LV s(x
Y= 2 (5)o(x") = o (x) 9(X)
Now, we can write the eigenvector equation as follows:
v=L3a(x) = 16(X) a
nig
Since Zv = Av, we get:

H(X) 6(X)0(X) a=24(X) a

T T

%¢(X)¢(X) #(X)4(X) a=29(X)g(X)

=2 g(X)¢(X) a=2a

:lKa:ﬁa
n

Here, K is the similarity (kernel) matrix:

K=¢(X)p(X)

The derivation of the kernel matrix can be shown as follows. First, let's
write the covariance matrix as in matrix notation, where ¢(.X) isan n

Multiplying it by ¢(X) on both sides yields the following result:

[169]

Compressing Data via Dimensionality Reduction

As we recall from the Solving nonlinear problems using a kernel SVM section in
Chapter 3, A Tour of Machine Learning Classifiers Using scikit-learn, we use the kernel
trick to avoid calculating the pairwise dot products of the samples x under ¢
explicitly by using a kernel function x so that we don't need to calculate the
eigenvectors explicitly:

In other words, what we obtain after kernel PCA are the samples already projected
onto the respective components, rather than constructing a transformation matrix
as in the standard PCA approach. Basically, the kernel function (or simply kernel)
can be understood as a function that calculates a dot product between two
vectors—a measure of similarity.

The most commonly used kernels are as follows:

e The polynomial kernel:
K(X x)) - (x0T 0) 9)”

Here, @ is the threshold and 7 is the power that has to be specified by the
user.

* The hyperbolic tangent (sigmoid) kernel:

K(x(i),x(j)) = tanh (nx(i)Tx(j) + 6?)

e The Radial Basis Function (RBF) or Gaussian kernel, which we will use in
the following examples in the next subsection:

It is often written in the following form, introducing the variable 7 =

)

2
()

K(x<f>,x<f>):exp(_y||x<f>_x

[170]

Chapter 5

To summarize what we have learned so far, we can define the following three steps
to implement an RBF kernel PCA:

1. We compute the kernel (similarity) matrix K, where we need to calculate
the following:
)

i)

K(X, xm) —exp (_ y ”x(,-) It

We do this for each pair of samples:

‘K(x(l)ax(l)) K(x(l),x(Z)) K(x(l),x(”))
K(x(z),x(l)) (x(z),x(z)) K(x(z)’x(n))
K_
K(x("),x(l)) K(x("),x(z)) K(x(n)’x(n))

For example, if our dataset contains 100 training samples, the symmetric
kernel matrix of the pairwise similarities would be 100 x 100-dimensional.

2. We center the kernel matrix K using the following equation:

K'=-K-1,K-KI, +1 K1,

Here, 1, is an nxn-dimensional matrix (the same dimensions as the kernel

. 1
matrix) where all values are equal to —.

3. We collect the top k eigenvectors of thne centered kernel matrix based on their
corresponding eigenvalues, which are ranked by decreasing magnitude. In
contrast to standard PCA, the eigenvectors are not the principal component
axes, but the samples already projected onto these axes.

At this point, you may be wondering why we need to center the kernel matrix in the
second step. We previously assumed that we are working with standardized data,
where all features have mean zero when we formulated the covariance matrix and
replaced the dot-products with the nonlinear feature combinations via ¢ . Thus, the
centering of the kernel matrix in the second step becomes necessary, since we do not
compute the new feature space explicitly so that we cannot guarantee that the new
feature space is also centered at zero.

[171]

Compressing Data via Dimensionality Reduction

In the next section, we will put those three steps into action by implementing a
kernel PCA in Python.

Implementing a kernel principal component
analysis in Python

In the previous subsection, we discussed the core concepts behind kernel PCA. Now,
we are going to implement an RBF kernel PCA in Python following the three steps
that summarized the kernel PCA approach. Using some SciPy and NumPy helper
functions, we will see that implementing a kernel PCA is actually really simple:

from scipy.spatial.distance import pdist, squareform
from scipy import exp

from scipy.linalg import eigh

import numpy as np

def rbf kernel pca(X, gamma, n components) :

nun

RBF kernel PCA implementation.

Parameters

X: {NumPy ndarray}, shape = [n _samples, n_features]

gamma: float
Tuning parameter of the RBF kernel

n_components: int
Number of principal components to return

Returns

X pc: {NumPy ndarray}, shape = [n samples, k features]
Projected dataset

nnn

Calculate pairwise squared Euclidean distances
in the MxN dimensional dataset.
sq _dists = pdist (X, 'sgeuclidean')

Convert pairwise distances into a square matrix.

[172]

Chapter 5

mat sqg dists = squareform(sg dists)

Compute the symmetric kernel matrix.
K = exp(-gamma * mat sqg dists)

Center the kernel matrix.

N = K.shape[0]
one n = np.ones((N,N)) / N
K = K - one n.dot(K) - K.dot(one n) + one n.dot (K).dot (one n)

Obtaining eigenpairs from the centered kernel matrix
scipy.linalg.eigh returns them in ascending order
eigvals, eigvecs = eigh(K)

eigvals, eigvecs = eigvals[::-1], eigvecs[:, ::-1]

Collect the top k eigenvectors (projected samples)
X pc = np.column stack((eigvecs[:, il

for i in range(n components)))

return X pc

One downside of using an RBF kernel PCA for dimensionality reduction is that

we have to specify the 7 parameter a priori. Finding an appropriate value for 7
requires experimentation and is best done using algorithms for parameter tuning, for
example, performing a grid search, which we will discuss in more detail in Chapter 6,
Learning Best Practices for Model Evaluation and Hyperparameter Tuning.

Example 1 — separating half-moon shapes

Now, let us apply our rbf kernel pca On some nonlinear example datasets. We
will start by creating a two-dimensional dataset of 100 sample points representing
two half-moon shapes:

>>>

>>>

>>>

from sklearn.datasets import make moons
X, y = make moons(n_samples=100, random state=123)

plt.scatter (X[y==0, 0], X[y==0, 1],
color='red', marker='""', alpha=0.5)
plt.scatter (X[y==1, 0], X[y==1, 11,
color="'blue', marker='o', alpha=0.5)
plt.show()

[173]

Compressing Data via Dimensionality Reduction

For the purposes of illustration, the half-moon of triangle symbols shall represent
one class, and the half-moon depicted by the circle symbols represent the samples
from another class:

1.0 4 “A.‘anaﬁaﬁﬁij‘l
0.8 - a‘& “a,
' m .
0.5 - 'y “
& F 1
Iy H . H
.4 4 A a & L]
Y - r .
0249 & = " L]
A L] A &
| & ° a o
| ’ : S
() o
={.2 '-.' ..‘
—1.4 4 .-l.-
-1.0 -0.5 0.0 0.5 10 15 2.0

Clearly, these two half-moon shapes are not linearly separable, and our goal is to
unfold the half-moons via kernel PCA so that the dataset can serve as a suitable input
for a linear classifier. But first, let's see how the dataset looks if we project it onto the
principal components via standard PCA:

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

from sklearn.decomposition import PCA

scikit pca = PCA(n_ components=2)

X spca = scikit pca.fit transform(X)

fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3))

ax[0] .scatter (X spcaly==0, 0], X spcaly==0, 1],
color='red', marker='"', alpha=0.5)

ax[0] .scatter (X spcaly==1, 0], X spcaly==1, 1],
color="'blue', marker='o', alpha=0.5)

ax[1] .scatter (X spcaly==0, 0], np.zeros((50,1))+0.02,
color='red', marker='""', alpha=0.5)

ax[1] .scatter (X spcaly==1, 0], np.zeros((50,1))-0.02,
color='blue', marker='o', alpha=0.5)

ax[0] .set xlabel ('PC1')

ax[0] .set _ylabel ('PC2")

ax[1] .set_ylim([-1, 1])

ax[1] .set _yticks ([])

ax[1] .set_xlabel ('PC1')

plt.show ()

[174]

Chapter 5

Clearly, we can see in the resulting figure that a linear classifier would be unable to
perform well on the dataset transformed via standard PCA:

0.75 4
0.50 4

0.25 4

=0.25 1
—0.50 4

o T

=1 0 1 -1 o 1

Note that when we plotted the first principal component only (right subplot), we
shifted the triangular samples slightly upwards and the circular samples slightly
downwards to better visualize the class overlap. As the left subplot shows, the
original half-moon shapes are only slightly sheared and flipped across the vertical
center — this transformation would not help a linear classifier in discriminating
between circles and triangles. Similarly, the circles and triangles corresponding

to the two half-moon shapes are not linearly separable if we project the dataset
onto a one-dimensional feature axis, as shown in the right subplot.

Please remember that PCA is an unsupervised method and does
not use class label information in order to maximize the variance

in contrast to LDA. Here, the triangle and circle symbols were
' just added for visualization purposes to indicate the degree of

separation.

Now, let us try out our kernel PCA function rbf kernel pca, which we
implemented in the previous subsection:

>>> X kpca = rbf kernel pca (X, gamma=15, n components=2)

>>> fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3))

>>> ax[0] .scatter (X kpcaly==0, 0], X kpcaly==0, 1],
color='red', marker='""', alpha=0.5)

>>> ax[0] .scatter (X kpcaly==1, 0], X kpcaly==1, 1],
color='blue', marker='o', alpha=0.5)

>>> ax[1] .scatter (X kpcaly==0, 0], np.zeros((50,1))+0.02,

, alpha=0.5)

[Nl

color="'red', marker=

[175]

Compressing Data via Dimensionality Reduction

>>> ax[1l] .scatter (X kpcaly==1, 0], np.zeros((50,1))-0.02,
. color='blue', marker='o', alpha=0.5)
>>> ax[0] .set xlabel ('PC1')

>>> ax[0] .set ylabel ('PC2")

>>> ax[1] .set _ylim([-1, 1])

>>> ax[1l] .set _yticks([])

>>> ax[1] .set _xlabel ('PC1')

>>> plt.show()

We can now see that the two classes (circles and triangles) are linearly well
separated so that it becomes a suitable training dataset for linear classifiers:

0.15 1
“TVA
e 2 A 9
Q ZEE- % " E E————— . o—

—0.10 A

=0.15

-I:II.]. D:I:I Dil -I:II.]. Uiﬂ ﬂil
PC1 PC1

Unfortunately, there is no universal value for the tuning parameter 7 that works
well for different datasets. Finding a 7 value that is appropriate for a given problem
requires experimentation. In Chapter 6, Learning Best Practices for Model Evaluation and
Hyperparameter Tuning, we will discuss techniques that can help us to automate the
task of optimizing such tuning parameters. Here, | will use values for 7 that | found
produce good results.

Example 2 — separating concentric circles

In the previous subsection, we showed how to separate half-moon shapes via
kernel PCA. Since we put so much effort into understanding the concepts of kernel
PCA, let us take a look at another interesting example of a nonlinear problem,
concentric circles:

>>> from sklearn.datasets import make circles

>>> X, y = make circles(n samples=1000,

.. random_state=123, noise=0.1, factor=0.2)
>>> plt.scatter (X[y==0, 0], X[y==0, 1],

[176]

Chapter 5

.. color='red', marker='"', alpha=0.5)
>>> plt.scatter (X[y==1, 0], X[y==1, 1],

.. color="'blue', marker='o', alpha=0.5)
>>> plt.show()

Again, we assume a two-class problem where the triangle shapes represent one class,
and the circle shapes represent another class:

1.0 4
0.5
0.0 4
-0.5
-1.0 4
2 v * i3 T
=10 =05 0.0 0.5 Lo

Let's start with the standard PCA approach to compare it to the results of the RBF
kernel PCA:

>>> scikit pca = PCA(n_components=2)

>>> X spca = scikit pca.fit_transform(X)

>>> fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3))

>>> ax[0] .scatter (X spcaly==0, 0], X spcaly==0, 1],
color='red', marker='"', alpha=0.5)

>>> ax[0] .scatter (X spcaly==1, 0], X spcaly==1, 1],
color="'blue', marker='o', alpha=0.5)

>>> ax[1l] .scatter (X spcaly==0, 0], np.zeros((500,1))+0.02,
color='red', marker='"', alpha=0.5)

>>> ax[1l] .scatter (X spcaly==1, 0], np.zeros((500,1))-0.02,

. color='blue', marker='o', alpha=0.5)

>>> ax[0] .set xlabel ('PC1')

>>> ax[0] .set _ylabel ('PC2")

>>> ax[1] .set_ylim([-1, 1])

>>> ax[1l] .set_yticks([])

>>> ax[1] .set_xlabel ('PC1"')

>>> plt.show()

[177]

Compressing Data via Dimensionality Reduction

Again, we can see that standard PCA is not able to produce results suitable for
training a linear classifier:

pC2

-1.04

P T ———
&
-1.0 =03 0.0 0.5 1.0 =1.0 =05 0.0 0.5 1.0
PC1 PC1

Given an appropriate value for 7, let us see if we are luckier using the RBF kernel
PCA implementation:

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

X _kpca = rbf kernel pca(X, gamma=15, n_components=2)

fig, ax = plt.subplots (nrows=1,ncols=2, figsize=(7,3))

ax[0] .scatter (X _kpcaly==0, 0], X kpcaly==0, 11,
color='red', marker='"', alpha=0.5)

ax[0] .scatter (X kpcaly==1, 0], X kpcaly==1, 1],
color='blue', marker='o', alpha=0.5)

ax[1] .scatter (X kpcaly==0, 0], np.zeros((500,1))+0.02,
color='red', marker='"', alpha=0.5)

ax[1] .scatter (X kpcaly==1, 0], np.zeros((500,1))-0.02,
color='blue', marker='o', alpha=0.5)

ax[0] .set xlabel ('PC1"')

ax[0] .set_ylabel ('PC2")

ax[1] .set _ylim([-1, 1])

ax[1] .set_yticks([])

ax[1l] .set xlabel ('PC1')

plt.show ()

[178]

Chapter 5

Again, the RBF kernel PCA projected the data onto a new subspace where the two
classes become linearly separable:

0.075 4
0.050 -
0.025 1

0.000 4 -

PFC2

=0.025 -

=0.050 4

=0.075 - - - - : : T T T T T -
=0.04 =0.02 0.00 002 0.04 0.06 =0.04 =0.02 0.00 0.02 0.04 0.08

FC1 PC1

Projecting new data points

In the two previous example applications of kernel PCA, the half-moon shapes
and the concentric circles, we projected a single dataset onto a new feature. In
real applications, however, we may have more than one dataset that we want to
transform, for example, training and test data, and typically also new samples we
will collect after the model building and evaluation. In this section, you will learn
how to project data points that were not part of the training dataset.

As we remember from the standard PCA approach at the beginning of this chapter,
we project data by calculating the dot product between a transformation matrix and
the input samples; the columns of the projection matrix are the top k eigenvectors (v)
that we obtained from the covariance matrix.

Now, the question is how we can transfer this concept to kernel PCA. If we think
back to the idea behind kernel PCA, we remember that we obtained an eigenvector
(a) of the centered kernel matrix (not the covariance matrix), which means that those
are the samples that are already projected onto the principal component axis v. Thus,
if we want to project a new sample X' onto this principal component axis, we'd need
to compute the following:

d(x") v

[179]

Compressing Data via Dimensionality Reduction

Fortunately, we can use the kernel trick so that we don't have to calculate the

projection ¢(x')r v explicitly. However, it is worth noting that kernel PCA, in
contrast to standard PCA, is a memory-based method, which means that we have

to re-use the original training set each time to project new samples. We have to
calculate the pairwise RBF kernel (similarity) between each ith sample in the training
dataset and the new sample x':

#(x') v=2d"9(x") ¢(x")

= Z a(i)K(x', x)

Here, the eigenvectors a and eigenvalues A of the kernel matrix K satisfy the
following condition in the equation:

Ka=Aa

After calculating the similarity between the new samples and the samples in the
training set, we have to normalize the eigenvector a by its eigenvalue. Thus, let us
modify the rbf kernel pca function that we implemented earlier so that it also
returns the eigenvalues of the kernel matrix:

from scipy.spatial.distance import pdist, squareform
from scipy import exp

from scipy.linalg import eigh

import numpy as np

def rbf kernel pca (X, gamma, n_components) :

nnn

RBF kernel PCA implementation.
Parameters

X: {NumPy ndarray}, shape = [n samples, n_features]

gamma: float
Tuning parameter of the RBF kernel

n_components: int

[180]

Chapter 5

Number of principal components to return

Returns
X pc: {NumPy ndarray}, shape = [n_samples, k features]
Projected dataset

lambdas: list
Eigenvalues

nnn

Calculate pairwise squared Euclidean distances
in the MxN dimensional dataset.
sq_dists = pdist (X, 'sgeuclidean')

Convert pairwise distances into a square matrix.
mat sq dists = squareform(sg dists)

Compute the symmetric kernel matrix.
K = exp(-gamma * mat sqg dists)

Center the kernel matrix.

N = K.shape[0]

one n = np.ones((N,N)) / N

K = K - one n.dot (K) - K.dot(one n) + one n.dot (K).dot (one n)

Obtaining eigenpairs from the centered kernel matrix
scipy.linalg.eigh returns them in ascending order
eigvals, eigvecs = eigh(K)

eigvals, eigvecs = eigvals[::-1], eigvecs[:, ::-1]

Collect the top k eigenvectors (projected samples)
alphas = np.column_ stack((eigvecs([:, 1i]

for i in range(n components)))

Collect the corresponding eigenvalues
lambdas = [eigvals[i] for i in range(n components)]

return alphas, lambdas

[181]

Compressing Data via Dimensionality Reduction

Now, let's create a new half-moon dataset and project it onto a one-dimensional
subspace using the updated RBF kernel PCA implementation:

>>> X, y = make moons (n samples=100, random state=123)
>>> alphas, lambdas = rbf kernel pca (X, gamma=15, n_components=1)

To make sure that we implemented the code for projecting new samples, let us
assume that the 26th point from the half-moon dataset is a new data point x', and
our task is to project it onto this new subspace:

>>> x new = X[25]

>>> X _new

array ([1.8713187 , 0.009282457)

>>> X proj = alphas[25] # original projection

>>> X _Proj

array ([0.07877284])

>>> def project x(x new, X, gamma, alphas, lambdas):
pair dist = np.array([np.sum/(

(x_new-row) **2) for row in X])

k = np.exp(-gamma * pair dist)
return k.dot (alphas / lambdas)

By executing the following code, we are able to reproduce the original projection.
Using the project_x function, we will be able to project any new data sample as
well. The code is as follows:

>>> X reproj = project x(x new, X,

gamma=15, alphas=alphas, lambdas=lambdas)
>>> X _reproj
array ([0.07877284])

Lastly, let's visualize the projection on the first principal component:

>>> plt.scatter(alphas[y==0, 0], np.zeros((50)),
color='red', marker='""',alpha=0.5)

>>> plt.scatter(alphas[y==1, 0], np.zeros((50)),
color="'blue', marker='o', alpha=0.5)

>>> plt.scatter(x proj, 0, color='black',
label='original projection of point X[25]',
marker='"", s=100)

>>> plt.scatter (x reproj, 0, color='green',
label="'remapped point X[25]"',

. marker='x', s=500)

>>> plt.legend (scatterpoints=1)

>>> plt.show()

[182]

Chapter 5

As we can now also see in the following scatterplot, we mapped the sample x’ onto
the first principal component correctly:

0.015
A . original projection of point 1251
remapped point X[(25]

0.010 4

0.005 -

CLOON 4 00 A . -----i]é&--l--
-0.005
=0.010 4
-0.015 . : : - : .

-0.15% -0.10 ~0.05 0.00 0.05 0.10 0.15

Kernel principal component analysis in
scikit-learn

For our convenience, scikit-learn implements a kernel PCA class in the sklearn.
decomposition submodule. The usage is similar to the standard PCA class, and we
can specify the kernel via the kernel parameter:

>>> from sklearn.decomposition import KernelPCA

>>> X, y = make moons (n_samples=100, random state=123)

>>> scikit_kpca = KernelPCA(n_components=2,
kernel="rbf', gamma=15)

>>> X skernpca = scikit kpca.fit transform(X)

To check that we get results that are consistent with our own kernel PCA
implementation, let's plot the transformed half-moon shape data onto the first two
principal components:

>>> plt.scatter (X skernpcaly==0, 0], X skernpcaly==0, 1],
color='red', marker='"', alpha=0.5)
>>> plt.scatter (X skernpcaly==1, 0], X skernpcaly==1, 1],

.. color="'blue', marker='o', alpha=0.5)
>>> plt.xlabel ('PC1l"')

>>> plt.ylabel ('PC2")

>>> plt.show()

[183]

Compressing Data via Dimensionality Reduction

As we can see, the results of scikit-learn's kernelpca are consistent with our own
implementation:

0.4
L‘.'..H.,_* '.-.‘H
0.3 4 g *4 "

0.2 4

0.1 4

0.0

PC2

-0.1 4

=0, 7

-04 =03 =02 =00 00 01 02 03 04

The scikit-learn library also implements advanced techniques for
. nonlinear dimensionality reduction that are beyond the scope
of this book. The interested reader can find a nice overview
s of the current implementations in scikit-learn, complemented
by illustrative examples, at http://scikit-learn.org/
stable/modules/manifold.html.

Summary

In this chapter, you learned about three different, fundamental dimensionality
reduction techniques for feature extraction: standard PCA, LDA, and kernel PCA.
Using PCA, we projected data onto a lower-dimensional subspace to maximize

the variance along the orthogonal feature axes, while ignoring the class labels.
LDA, in contrast to PCA, is a technique for supervised dimensionality reduction,
which means that it considers class information in the training dataset to attempt to
maximize the class-separability in a linear feature space.

Lastly, you learned about a nonlinear feature extractor, kernel PCA. Using the
kernel trick and a temporary projection into a higher-dimensional feature space,
you were ultimately able to compress datasets consisting of nonlinear features
onto a lower-dimensional subspace where the classes became linearly separable.

Equipped with these essential preprocessing techniques, you are now well prepared
to learn about the best practices for efficiently incorporating different preprocessing
techniques and evaluating the performance of different models in the next chapter.

[184]

Learning Best Practices
for Model Evaluation and
Hyperparameter Tuning

In the previous chapters, you learned about the essential machine learning
algorithms for classification and how to get our data into shape before we feed it into
those algorithms. Now, it's time to learn about the best practices of building good
machine learning models by fine-tuning the algorithms and evaluating the model's
performance! In this chapter, we will learn how to do the following:

e Obtain unbiased estimates of a model's performance

* Diagnose the common problems of machine learning algorithms
* Fine-tune machine learning models

e Evaluate predictive models using different performance metrics

Streamlining workflows with pipelines

When we applied different preprocessing techniques in the previous chapters, such
as standardization for feature scaling in Chapter 4, Building Good Training Sets — Data
Preprocessing, or principal component analysis for data compression in Chapter 5,
Compressing Data via Dimensionality Reduction, you learned that we have to reuse
the parameters that were obtained during the fitting of the training data to scale
and compress any new data, such as the samples in the separate test dataset. In this
section, you will learn about an extremely handy tool, the pipeline class in scikit-
learn. It allows us to fit a model including an arbitrary number of transformation
steps and apply it to make predictions about new data.

[185]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

Loading the Breast Cancer Wisconsin dataset

In this chapter, we will be working with the Breast Cancer Wisconsin dataset,

which contains 569 samples of malignant and benign tumor cells. The first two
columns in the dataset store the unique ID numbers of the samples and the
corresponding diagnoses (M = malignant, B = benign), respectively. Columns 3-32
contain 30 real-valued features that have been computed from digitized images of
the cell nuclei, which can be used to build a model to predict whether a tumor is
benign or malignant. The Breast Cancer Wisconsin dataset has been deposited in the
UCI Machine Learning Repository, and more detailed information about this dataset
can be found at https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wi
sconsin+ (Diagnostic).

You can find a copy of the breast cancer dataset (and all other datasets

used in this book) in the code bundle of this book, which you can use if

you are working offline or the UCI server at https://archive.ics.

uci.edu/ml/machine-learning-databases/breast-cancer-

wisconsin/wdbc.data is temporarily unavailable. For instance, to load

_ the Wine dataset from a local directory, you can take the following lines:
% df = pd.read_csv('https://archive.ics.uci.edu/ml/"’
~ 'machine-learning-databases'

' /breast-cancer-wisconsin/wdbc.data',
header=None)

Replace the preceding lines with this:

df = pd.read csv('your/local/path/to/wdbc.data’,

header=None)

In this section, we will read in the dataset and split it into training and test datasets
in three simple steps:

1. We will start by reading in the dataset directly from the UCI website using
pandas:.

>>> import pandas as pd

>>> df = pd.read csv('https://archive.ics.uci.edu/ml/"
'machine-learning-databases'
' /breast-cancer-wisconsin/wdbc.data',
header=None)

[186]

Chapter 6

Next, we assign the 30 features to a NumPy array x. Using a LabelEncoder
object, we transform the class labels from their original string representation
('m' and 'B") into integers:

>>> from sklearn.preprocessing import LabelEncoder

>>> X = df.loc[:, 2:].values
>>> y = df.loc[:, 1].values

>>> le = LabelEncoder ()

>>> y = le.fit transform(y)

>>> le.classes

array(['B', 'M'], dtype=object)

After encoding the class labels (diagnosis) in an array vy, the malignant
tumors are now represented as class 1, and the benign tumors are
represented as class o, respectively. We can double-check this mapping by
calling the transform method of the fitted LabelEncoder on two dummy
class labels:

>>> le.transform(['M', 'B'])
array ([1, 0])

Before we construct our first model pipeline in the following subsection, let
us divide the dataset into a separate training dataset (80 percent of the data)
and a separate test dataset (20 percent of the data):

>>> from sklearn.model selection import train test split

>>> X train, X test, y train, y test = \
>>> train test split(X, vy,
test size=0.20,
stratify=y,
random_state=1)

Combining transformers and estimators in a
pipeline

In the previous chapter, you learned that many learning algorithms require input
features on the same scale for optimal performance. Thus, we need to standardize
the columns in the Breast Cancer Wisconsin dataset before we can feed them to a
linear classifier, such as logistic regression. Furthermore, let's assume that we want
to compress our data from the initial 30 dimensions onto a lower two-dimensional
subspace via Principal Component Analysis (PCA), a feature extraction technique
for dimensionality reduction that we introduced in Chapter 5, Compressing Data via
Dimensionality Reduction.

[187]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

Instead of going through the fitting and transformation steps for the training
and test datasets separately, we can chain the standardscaler, Pca, and
LogisticRegression objects in a pipeline:

>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.decomposition import PCA
>>> from sklearn.linear model import LogisticRegression
>>> from sklearn.pipeline import make pipeline
>>> pipe 1lr = make pipeline(StandardScaler(),
PCA (n_components=2),
LogisticRegression (random state=1))
>>> pipe 1lr.fit (X train, y train)
>>> y pred = pipe lr.predict (X test)
>> print ('Test Accuracy: %.3f' % pipe lr.score(X test, y test))
Test Accuracy: 0.956

The make pipeline function takes an arbitrary number of scikit-learn transformers
(objects that support the £it and transform methods as input), followed by a
scikit-learn estimator that implements the fit and predict methods. In our
preceding code example, we provided two transformers, standardScaler and PCa,
and a LogisticRegression estimator as inputs to the make pipeline function,
which constructs a scikit-learn ripeline object from these objects.

We can think of a scikit-learn pipeline as a meta-estimator or wrapper around those
individual transformers and estimators. If we call the £it method of pipeline, the
data will be passed down a series of transformers via fit and transform calls on
these intermediate steps until it arrives at the estimator object (the final element in a
pipeline). The estimator will then be fitted to the transformed training data.

When we executed the £it method on the pipe 1r pipeline in the preceding code
example, standardScaler first performed £it and transform calls on the training
data. Second, the transformed training data was passed on to the next object in the
pipeline, pca. Similar to the previous step, pca also executed fit and transform on
the scaled input data and passed it to the final element of the pipeline, the estimator.

Finally, the LogisticRegression estimator was fit to the training data after it
underwent transformations via standardscaler and pca. Again, we should note
that there is no limit to the number of intermediate steps in a pipeline; however, the
last pipeline element has to be an estimator.

Similar to calling £it on a pipeline, pipelines also implement a predict method. If
we feed a dataset to the predict call of a Pipeline object instance, the data will pass
through the intermediate steps via transform calls. In the final step, the estimator
object will then return a prediction on the transformed data.

[188]

Chapter 6

The pipelines of scikit-learn library are immensely useful wrapper tools, which we
will use frequently throughout the rest of this book. To make sure that you've got a
good grasp of how ripeline object works, please take a close look at the following
illustration, which summarizes our discussion from the previous paragraphs:

(Step 1) (Step 2)

Test set

J‘I. pipeline.predicc(...)
/ Pipeline \

Scaling

pipeline.fitc(...)

givl.) &
Jgtransform(,..)

.transform(..)

Dimensionality
Reduction

L) &
transform..)

Learning Algorithm ctransform(..)

it

Predictive Madal

FATAY A

Class labels

\ pradictl.) /

Using k-fold cross-validation to assess
model performance

One of the key steps in building a machine learning model is to estimate its
performance on data that the model hasn't seen before. Let's assume that we fit our
model on a training dataset and use the same data to estimate how well it performs
on new data. We remember from the Tackling overfitting via reqularization section in
Chapter 3, A Tour of Machine Learning Classifiers Using scikit-learn, that a model can
either suffer from underfitting (high bias) if the model is too simple, or it can overfit
the training data (high variance) if the model is too complex for the underlying

training data.

[189]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

To find an acceptable bias-variance trade-off, we need to evaluate our model
carefully. In this section, you will learn about the common cross-validation
techniques holdout cross-validation and k-fold cross-validation, which can help us
obtain reliable estimates of the model's generalization performance, that is, how well
the model performs on unseen data.

The holdout method

A classic and popular approach for estimating the generalization performance of
machine learning models is holdout cross-validation. Using the holdout method, we
split our initial dataset into a separate training and test dataset—the former is used
for model training, and the latter is used to estimate its generalization performance.
However, in typical machine learning applications, we are also interested in tuning
and comparing different parameter settings to further improve the performance for
making predictions on unseen data. This process is called model selection, where
the term model selection refers to a given classification problem for which we want
to select the optimal values of tuning parameters (also called hyperparameters).
However, if we reuse the same test dataset over and over again during model
selection, it will become part of our training data and thus the model will be more
likely to overfit. Despite this issue, many people still use the test set for model
selection, which is not a good machine learning practice.

A better way of using the holdout method for model selection is to separate the data
into three parts: a training set, a validation set, and a test set. The training set is used
to fit the different models, and the performance on the validation set is then used
for the model selection. The advantage of having a test set that the model hasn't
seen before during the training and model selection steps is that we can obtain a
less biased estimate of its ability to generalize to new data. The following figure
illustrates the concept of holdout cross-validation, where we use a validation set

to repeatedly evaluate the performance of the model after training using different
parameter values. Once we are satisfied with the tuning of hyperparameter values,
we estimate the models' generalization performance on the test dataset:

[190]

Chapter 6

[Original dataset]
v l +
| Training set | Test set |
1
T T
| Training set | Validation set | Test set |

Change hyperparameters

and ropeat

Machine learning O
algarithm

Evaluate

Fit
d
&
Final performance estimarte

A disadvantage of the holdout method is that the performance estimate may

be very sensitive to how we partition the training set into the training and

validation subsets; the estimate will vary for different samples of the data. In the
next subsection, we will take a look at a more robust technique for performance
estimation, k-fold cross-validation, where we repeat the holdout method k times on k
subsets of the training data.

K-fold cross-validation

In k-fold cross-validation, we randomly split the training dataset into k folds without
replacement, where k — 1 folds are used for the model training, and one fold is used
for performance evaluation. This procedure is repeated k times so that we obtain k
models and performance estimates.

We looked at an example to illustrate sampling with and without
. replacement in Chapter 3, A Tour of Machine Learning Classifiers
Using scikit-learn. If you haven't read that chapter, or want a
s refresher, refer to the information box in the Combining multiple
decision trees via random forests section in Chapter 3, A Tour of
Machine Learning Classifiers Using scikit-learn.

[191]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

We then calculate the average performance of the models based on the different,
independent folds to obtain a performance estimate that is less sensitive to the
sub-partitioning of the training data compared to the holdout method. Typically,
we use k-fold cross-validation for model tuning, that is, finding the optimal
hyperparameter values that yields a satisfying generalization performance.

Once we have found satisfactory hyperparameter values, we can retrain the model
on the complete training set and obtain a final performance estimate using the
independent test set. The rationale behind fitting a model to the whole training
dataset after k-fold cross-validation is that providing more training samples to a
learning algorithm usually results in a more accurate and robust model.

Since k-fold cross-validation is a resampling technique without replacement, the
advantage of this approach is that each sample point will be used for training

and validation (as part of a test fold) exactly once, which yields a lower-variance
estimate of the model performance than the holdout method. The following figure
summarizes the concept behind k-fold cross-validation with k = 10. The training
dataset is divided into 10 folds, and during the 10 iterations, nine folds are used for
training, and one fold will be used as the test set for the model evaluation. Also, the
estimated performances E; (for example, classification accuracy or error) for each
fold are then used to calculate the estimated average performance E of the model:

| Trainkng set |

Training felds Test inid

I I | R
e T T = ¢

e [| [[[[[[M]=6&
vws [T TTTT T T] =6

s [l T T T T T T T T = Eio |

A good standard value for k in k-fold cross-validation is 10, as empirical evidence
shows. For instance, experiments by Ron Kohavi on various real-world datasets
suggest that 10-fold cross-validation offers the best trade-off between bias and
variance (A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model
Selection, Kohavi, Ron, International Joint Conference on Artificial Intelligence (IJCAI), 14
(12): 1137-43, 1995).

[192]

Chapter 6

However, if we are working with relatively small training sets, it can be useful

to increase the number of folds. If we increase the value of k, more training data

will be used in each iteration, which results in a lower bias towards estimating the
generalization performance by averaging the individual model estimates. However,
large values of k will also increase the runtime of the cross-validation algorithm and
yield estimates with higher variance, since the training folds will be more similar to
each other. On the other hand, if we are working with large datasets, we can choose
a smaller value for k, for example, k = 5, and still obtain an accurate estimate of the
average performance of the model while reducing the computational cost of refitting
and evaluating the model on the different folds.

A special case of k-fold cross-validation is the Leave-one-out
cross-validation (LOOCV) method. In LOOCYV, we set the number

of folds equal to the number of training samples (k =) so that only
T~ one training sample is used for testing during each iteration, which

is a recommended approach for working with very small datasets.

A slight improvement over the standard k-fold cross-validation approach is stratified
k-fold cross-validation, which can yield better bias and variance estimates, especially
in cases of unequal class proportions, as has been shown in a study by Ron Kohavi
(A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection,
International Joint Conference on Artificial Intelligence (IJCAI), 14 (12): 1137-43, 1995). In
stratified cross-validation, the class proportions are preserved in each fold to ensure
that each fold is representative of the class proportions in the training dataset, which
we will illustrate by using the stratifiedkFold iterator in scikit-learn:

>>> import numpy as np
>>> from sklearn.model selection import StratifiedKFold

>>> kfold = StratifiedKFold(n splits=10,
random state=1) .split (X train,
y train)
>>> scores = []
>>> for k, (train, test) in enumerate (kfold) :
pipe lr.fit(X train([train], y trainltrain])
score = pipe lr.score(X train[test], y train[test])
scores.append (score)
print ('Fold: %2d, Class dist.: %s, Acc: %.3f' % (k+1,
)

.. np.bincount (y train[train]), score))
Fold: 1, Class dist.: [256 153], Acc: 0.935
Fold: 2, Class dist.: [256 153], Acc: 0.935
Fold: 3, Class dist.: [256 153], Acc: 0.957
Fold: 4, Class dist.: [256 153], Acc: 0.957
Fold: 5, Class dist.: [256 153], Acc: 0.935

[193]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

Fold: 6, Class dist.: [257 153], Acc: 0.956
Fold: 7, Class dist.: [257 153], Acc: 0.978
Fold: 8, Class dist.: [257 153], Acc: 0.933
Fold: 9, Class dist.: [257 153], Acc: 0.956
Fold: 10, Class dist.: [257 153], Acc: 0.956

>>> print ('\nCV accuracy: %.3f +/- %.3f' %
. (np.mean (scores), np.std(scores)))
CV accuracy: 0.950 +/- 0.014

First, we initialized the stratifiedkfold iterator from the sklearn.model
selection module with the y_train class labels in the training set, and we specified
the number of folds via the n_splits parameter. When we used the kfold iterator
to loop through the k folds, we used the returned indices in train to fit the logistic
regression pipeline that we set up at the beginning of this chapter. Using the

pipe_ 1r pipeline, we ensured that the samples were scaled properly (for instance,
standardized) in each iteration. We then used the test indices to calculate the
accuracy score of the model, which we collected in the scores list to calculate the
average accuracy and the standard deviation of the estimate.

Although the previous code example was useful to illustrate how k-fold cross-
validation works, scikit-learn also implements a k-fold cross-validation scorer,
which allows us to evaluate our model using stratified k-fold cross-validation less
verbosely:

>>> from sklearn.model selection import cross_val score

>>> scores = cross _val score(estimator=pipe 1r,

X=X train,

y=y train,

cv=10,

n_ jobs=1)
>>> print ('CV accuracy scores: %s' % scores)
93478261 0.93478261 0.95652174
95652174 0.93478261 0.95555556
97777778 0.93333333 0.95555556
95555556]
>>> print ('CV accuracy: %.3f +/- %$.3f' % (np.mean(scores),
c. np.std(scores)))
CV accuracy: 0.950 +/- 0.014

CV accuracy scores: [

0.
0.
0.
0.

[194]

Chapter 6

An extremely useful feature of the cross_val score approach is that we can
distribute the evaluation of the different folds across multiple CPUs on our machine.
If we setthe n_jobs parameter to 1, only one CPU will be used to evaluate the
performances, just like in our stratifiedkFold example previously. However, by
setting n_jobs=2, we could distribute the 10 rounds of cross-validation to two CPUs
(if available on our machine), and by setting n_jobs=-1, we can use all available
CPUs on our machine to do the computation in parallel.

Please note that a detailed discussion of how the variance of the
generalization performance is estimated in cross-validation is beyond
the scope of this book, but | have written a series of articles about
model evaluation and cross-validation that discuss these topics in
more depth. These articles are available here:
* https://sebastianraschka.com/blog/2016/model-
evaluation-selection-partl.html
* https://sebastianraschka.com/blog/2016/model-
evaluation-selection-part2.html
e https://sebastianraschka.com/blog/2016/model-
L evaluation-selection-part3.html

In addition, you can find a detailed discussion in this excellent article
by M. Markatou and others (Analysis of Variance of Cross-validation
Estimators of the Generalization Error, M. Markatou, H. Tian, S. Biswas,
and G. M. Hripcsak, Journal of Machine Learning Research, 6: 1127-1168,
2005).

You can also read about alternative cross-validation techniques,
such as the .632 Bootstrap cross-validation method (Improvements on
Cross-validation: The .632+ Bootstrap Method, B. Efron and R. Tibshirani,
Journal of the American Statistical Association, 92(438): 548-560, 1997).

Debugging algorithms with learning and
validation curves

In this section, we will take a look at two very simple yet powerful diagnostic
tools that can help us improve the performance of a learning algorithm: learning
curves and validation curves. In the next subsections, we will discuss how we can
use learning curves to diagnose whether a learning algorithm has a problem with
overfitting (high variance) or underfitting (high bias). Furthermore, we will take a
look at validation curves that can help us address the common issues of a learning
algorithm.

[195]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

Diagnosing bias and variance problems with
learning curves

If a model is too complex for a given training dataset—there are too many degrees

of freedom or parameters in this model — the model tends to overfit the training

data and does not generalize well to unseen data. Often, it can help to collect more
training samples to reduce the degree of overfitting. However, in practice, it can
often be very expensive or simply not feasible to collect more data. By plotting the
model training and validation accuracies as functions of the training set size, we can
easily detect whether the model suffers from high variance or high bias, and whether
the collection of more data could help address this problem. But before we discuss
how to plot learning curves in scikit-learn, let's discuss those two common model
issues by walking through the following illustration:

o High bias High variance
] : -
El —
o o~
= T T 2| -
Mumber of training samples ' Mumber of training samples

Good bias-variance trade-off

Training accuracy

—— Valldation accuracy

Accuracy

------ Diesired accuracy

Mumber of training samples

[196]

Chapter 6

The graph in the upper-left shows a model with high bias. This model has both low
training and cross-validation accuracy, which indicates that it underfits the training
data. Common ways to address this issue are to increase the number of parameters
of the model, for example, by collecting or constructing additional features, or by
decreasing the degree of regularization, for example, in SVM or logistic regression
classifiers.

The graph in the upper-right shows a model that suffers from high variance, which
is indicated by the large gap between the training and cross-validation accuracy. To
address this problem of overfitting, we can collect more training data, reduce the
complexity of the model, or increase the regularization parameter, for example. For
unregularized models, it can also help decrease the number of features via feature
selection (Chapter 4, Building Good Training Sets — Data Preprocessing) or feature
extraction (Chapter 5, Compressing Data via Dimensionality Reduction) to decrease the
degree of overfitting. While collecting more training data usually tends to decrease
the chance of overfitting, it may not always help, for example, if the training data is
extremely noisy or the model is already very close to optimal.

In the next subsection, we will see how to address those model issues using
validation curves, but let's first see how we can use the learning curve function from
scikit-learn to evaluate the model:

>>> import matplotlib.pyplot as plt
>>> from sklearn.model selection import learning curve

>>> pipe 1lr = make pipeline(StandardScaler(),
LogisticRegression (penalty='12",
random_state=1))
>>> train sizes, train scores, test scores =\
learning curve (estimator=pipe 1lr,

X=X train,

y=y train,

train sizes=np.linspace (

0.1, 1.0, 10),

cv=10,

n_ jobs=1)
>>> train mean = np.mean(train scores, axis=1)
>>> train std = np.std(train scores, axis=1)
>>> test mean = np.mean(test scores, axis=1)
>>> test std = np.std(test_scores, axis=1)

>>> plt.plot(train sizes, train mean,
color='blue', marker='o',

[197]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

markersize=5, label='training accuracy')

>>> plt.fill between(train sizes,
train mean + train std,
train mean - train_ std,
alpha=0.15, color='blue')

>>> plt.plot(train sizes, test mean,
color='green', linestyle='--'",
marker='s', markersize=5,
label='validation accuracy')

>>> plt.fill between(train sizes,
test _mean + test_ std,
test mean - test std,
c.. alpha=0.15, color='green')
>>> plt.grid()
>>> plt.xlabel ('Number of training samples')
>>> plt.ylabel ('Accuracy')
>>> plt.legend(loc="'lower right')
>>> plt.ylim([0.8, 1.0])
>>> plt.show()

After we have successfully executed the preceding code, we obtain the following
learning curve plot:

1001 = - M
f__.-.___._ﬂ_.""._,__._-- ==
A=t
0.95{ =7
o
g
2
& 0.90 4
0.85 1
=8 lraining accuracy
=@ - validation accuracy
0.80

50 100 150 200 250 300 350 400

Number of training samples

[198]

Chapter 6

Viathe train sizes parameter in the learning curve function, we can control the
absolute or relative number of training samples that are used to generate the learning
curves. Here, we set train sizes=np.linspace (0.1, 1.0, 10) touse 10 evenly
spaced, relative intervals for the training set sizes. By default, the learning curve
function uses stratified k-fold cross-validation to calculate the cross-validation
accuracy of a classifier, and we set k=10 via the cv parameter for 10-fold stratified
cross-validation. Then, we simply calculated the average accuracies from the
returned cross-validated training and test scores for the different sizes of the training
set, which we plotted using Matplotlib's p1ot function. Furthermore, we added

the standard deviation of the average accuracy to the plot using the £i11 between
function to indicate the variance of the estimate.

As we can see in the preceding learning curve plot, our model performs quite well
on both the training and validation dataset if it had seen more than 250 samples
during training. We can also see that the training accuracy increases for training sets
with fewer than 250 samples, and the gap between validation and training accuracy
widens —an indicator of an increasing degree of overfitting.

Addressing over- and underfitting with
validation curves

Validation curves are a useful tool for improving the performance of a model by
addressing issues such as overfitting or underfitting. Validation curves are related to
learning curves, but instead of plotting the training and test accuracies as functions
of the sample size, we vary the values of the model parameters, for example, the
inverse regularization parameter c in logistic regression. Let's go ahead and see how
we create validation curves via scikit-learn:

>>> from sklearn.model selection import validation curve
>>> param range = [0.001, 0.01, 0.1, 1.0, 10.0, 100.0]
>>> train scores, test scores = validation curve(
estimator=pipe 1r,
X=X train,
y=y_ train,
param name='logisticregression C',
param_range=param_range,
cv=10)
>>> train mean = np.mean(train scores, axis=1)
>>> train std = np.std(train scores, axis=1)
>>> test mean = np.mean(test scores, axis=1)
>>> test std = np.std(test_scores, axis=1)
>>> plt.plot (param range, train mean,

[199]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

color="'blue', marker='o',
markersize=5, label='training accuracy')
>>> plt.fill between(param range, train mean + train_std,
train mean - train std, alpha=0.15,
color="'blue')
>>> plt.plot (param range, test mean,
color='green', linestyle='--'",
marker='s', markersize=5,
label='validation accuracy')
>>> plt.fill between (param range,
test _mean + test std,
test mean - test_std,
c.. alpha=0.15, color='green')
>>> plt.grid()
>>> plt.xscale('log')
>>> plt.legend(loc='lower right')
>>> plt.xlabel ('Parameter C')
>>> plt.ylabel ('Accuracy')
>>> plt.ylim([0.8, 1.03])
>>> plt.show()

Using the preceding code, we obtained the validation curve plot for the parameter c:

1.000
’_—l—".
._- -
0.975 - ‘“‘--L___
0.950 - -
0.925 -
T
i
o
E 0.900 4
0,875 -
0.850 A
0,825 - —&— lraining accuracy
=m- validation accuracy
0.800 T T T T T T
10-7 10 107 10 10! 107
Parameter C

[200]

Chapter 6

Similar to the 1earning curve function, the validation curve function uses
stratified k-fold cross-validation by default to estimate the performance of the
classifier. Inside the validation_curve function, we specified the parameter that we
wanted to evaluate. In this case, it is ¢, the inverse regularization parameter of the
LogisticRegression classifier, which we wrote as 'logisticregression C' to
access the LogisticRegression object inside the scikit-learn pipeline for a specified
value range that we set via the param_range parameter. Similar to the learning curve
example in the previous section, we plotted the average training and cross-validation
accuracies and the corresponding standard deviations.

Although the differences in the accuracy for varying values of c are subtle, we can
see that the model slightly underfits the data when we increase the regularization
strength (small values of ¢). However, for large values of ¢, it means lowering the
strength of regularization, so the model tends to slightly overfit the data. In this case,
the sweet spot appears to be between 0.01 and 0.1 of the ¢ value.

Fine-tuning machine learning models via
grid search

In machine learning, we have two types of parameters: those that are learned from
the training data, for example, the weights in logistic regression, and the parameters
of a learning algorithm that are optimized separately. The latter are the tuning
parameters, also called hyperparameters, of a model, for example, the regularization
parameter in logistic regression or the depth parameter of a decision tree.

In the previous section, we used validation curves to improve the performance of a
model by tuning one of its hyperparameters. In this section, we will take a look at a
popular hyperparameter optimization technique called grid search that can further
help improve the performance of a model by finding the optimal combination of
hyperparameter values.

Tuning hyperparameters via grid search

The approach of grid search is quite simple; it's a brute-force exhaustive search
paradigm where we specify a list of values for different hyperparameters, and the
computer evaluates the model performance for each combination of those to obtain
the optimal combination of values from this set:

>>> from sklearn.model selection import GridSearchCVv
>>> from sklearn.svm import SVC

>>> pipe svc = make pipeline(StandardScaler(),

[201]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

. SVC (random state=1))
>>> param range = [0.0001, 0.001, 0.01, 0.1,
1.0, 10.0, 100.0, 1000.0]
>>> param grid = [{'svc_ C': param range,
'svc__kernel': ['linear']},
{rsve__C': param range,
'svc__gamma': param range,
'sve__kernel': ['rbf']}]

>>> gs

GridSearchCV (estimator=pipe svc,
param grid=param grid,
scoring="'accuracy',
cv=10,
n_jobs=-1)
>>> gs = gs.fit (X train, y train)
>>> print (gs.best score)
0.984615384615
>>> print (gs.best params)
{tsve_C': 100.0, 'svc gamma': 0.001, 'svc_ kernel': 'rbf'}

Using the preceding code, we initialized a Gridsearchcv object from the sklearn.
model selection module to train and tune a Support Vector Machine (SVM)
pipeline. We set the param grid parameter of Gridsearchcv to a list of dictionaries
to specify the parameters that we'd want to tune. For the linear SVM, we only
evaluated the inverse regularization parameter c; for the RBF kernel SVM, we tuned
both the sve_ cand svc__gamma parameter. Note that the svc__gamma parameter is
specific to kernel SVMs.

After we used the training data to perform the grid search, we obtained the score

of the best-performing model via the best _score_ attribute and looked at its
parameters that can be accessed via the best _params_ attribute. In this particular
case, the RBF-kernel SVM model with sve_ ¢ = 100.0 yielded the best k-fold cross-
validation accuracy: 98.5 percent.

[202]

Chapter 6

Finally, we will use the independent test dataset to estimate the performance of the
best-selected model, which is available via the best_estimator attribute of the
GridSearchcCv object:

>>> clf = gs.best estimator
>>> clf.fit (X _train, y train

>>> print ('Test accuracy: %.3f' % clf.score(X test, y test))
Test accuracy: 0.974

Although grid search is a powerful approach for finding the optimal set of
parameters, the evaluation of all possible parameter combinations is also
computationally very expensive. An alternative approach to sampling
different parameter combinations using scikit-learn is randomized search.

% Using the RandomizedSearchCV class in scikit-learn, we can draw

g random parameter combinations from sampling distributions with a

specified budget. More details and examples of its usage can be found
athttp://scikit-learn.org/stable/modules/grid_search.
html#randomized-parameter-optimization.

Algorithm selection with nested
cross-validation

Using k-fold cross-validation in combination with grid search is a useful approach
for fine-tuning the performance of a machine learning model by varying its
hyperparameter values, as we saw in the previous subsection. If we want to select
among different machine learning algorithms, though, another recommended
approach is nested cross-validation. In a nice study on the bias in error estimation,
Varma and Simon concluded that the true error of the estimate is almost unbiased
relative to the test set when nested cross-validation is used (Bias in Error Estimation
When Using Cross-validation for Model Selection, BMC Bioinformatics, S. Varma and R.
Simon, 7(1): 91, 2006).

[203]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

In nested cross-validation, we have an outer k-fold cross-validation loop to split

the data into training and test folds, and an inner loop is used to select the model
using k-fold cross-validation on the training fold. After model selection, the test fold
is then used to evaluate the model performance. The following figure explains the
concept of nested cross-validation with only five outer and two inner folds, which
can be useful for large datasets where computational performance is important; this
particular type of nested cross-validation is also known as 5x2 cross-validation:

Original set |

[T | b ouerioop
[—-] Train with optimal

I P!ﬂI'I'IE[rEFE
1

] |
1

:

Inner loop

In scikit-learn, we can perform nested cross-validation as follows:

>>> gs = GridSearchCV(estimator=pipe_ svc,
param grid=param grid,
scoring='accuracy',
cv=2)

>>> scores = cross_val score(gs, X train, y train,
scoring='accuracy', cv=5)

>>> print ('CV accuracy: %.3f +/- %$.3f' % (np.mean(scores),

c. np.std(scores)))

CV accuracy: 0.974 +/- 0.015

[204]

Chapter 6

The returned average cross-validation accuracy gives us a good estimate of what
to expect if we tune the hyperparameters of a model and use it on unseen data.

For example, we can use the nested cross-validation approach to compare an SVM
model to a simple decision tree classifier; for simplicity, we will only tune its depth
parameter:

>>> from sklearn.tree import DecisionTreeClassifier

>>> gs = GridSearchCV(estimator=DecisionTreeClassifier(
random_state=0),
param grid=[{'max_depth': [1, 2, 3,
4, 5, 6, 7, Nonel }1,
scoring='accuracy',
cv=2)

>>> scores = cross val score(gs, X train, y train,
scoring='accuracy', cv=5)

>>> print ('CV accuracy: %.3f +/- %.3f' % (np.mean(scores),

. np.std(scores)))

CV accuracy: 0.934 +/- 0.016

As we can see, the nested cross-validation performance of the SVM model (97.4
percent) is notably better than the performance of the decision tree (93.4 percent),
and thus, we'd expect that it might be the better choice to classify new data that
comes from the same population as this particular dataset.

Looking at different performance
evaluation metrics

In the previous sections and chapters, we evaluated our models using model
accuracy, which is a useful metric with which to quantify the performance of a model
in general. However, there are several other performance metrics that can be used to
measure a model's relevance, such as precision, recall, and the F1-score.

[205]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

Reading a confusion matrix

Before we get into the details of different scoring metrics, let's take a look at a
confusion matrix, a matrix that lays out the performance of a learning algorithm.
The confusion matrix is simply a square matrix that reports the counts of the True
positive (TP), True negative (TN), False positive (FP), and False negative (FN)
predictions of a classifier, as shown in the following figure:

Predicted class
P N
True False
P | positives negatives
(TF) (FN)
Actual
class
Falze True
N | pogitives negalives
(FP) (TN)

Although these metrics can be easily computed manually by comparing the true and
predicted class labels, scikit-learn provides a convenient confusion matrix function
that we can use, as follows:

>>> from sklearn.metrics import confusion matrix

>>> pipe svc.fit (X train, y train)
>>> y pred = pipe svc.predict (X test)
>>> confmat = confusion matrix(y_true=y test, y pred=y pred)
>>> print (confmat)
(71 1]
[2 40]]

The array that was returned after executing the code provides us with information
about the different types of error the classifier made on the test dataset. We can map
this information onto the confusion matrix illustration in the previous figure using
Matplotlib's matshow function:

>>> fig, ax = plt.subplots(figsize=(2.5, 2.5))
>>> ax.matshow (confmat, cmap=plt.cm.Blues, alpha=0.3)
>>> for i in range (confmat.shape[0]) :
for j in range (confmat.shape([1l]) :
ax.text (x=j, y=1i,
s=confmat [1i, JjI,

[206]

Chapter 6

. va='center', ha='center')
>>> plt.xlabel ('predicted label')

>>> plt.ylabel ('true label!')

>>> plt.show()

Now, the following confusion matrix plot, with the added labels, should make the
results a little bit easier to interpret:

0 1
0 71 1
2
=
w
=
1 2 40
Predicted label

Assuming that class 1 (malignant) is the positive class in this example, our model
correctly classified 71 of the samples that belong to class 0 (TNs) and 40 samples
that belong to class 1 (TPs), respectively. However, our model also incorrectly
misclassified two samples from class 1 as class o (FN), and it predicted that one
sample is malignant although it is a benign tumor (FP). In the next section, we will
learn how we can use this information to calculate various error metrics.

Optimizing the precision and recall of a
classification model

Both the prediction error (ERR) and accuracy (ACC) provide general information
about how many samples are misclassified. The error can be understood as the
sum of all false predictions divided by the number of total predications, and the

accuracy is calculated as the sum of correct predictions divided by the total number
of predictions, respectively:

FP+FN

ERR =
FP+FN+TP+TN

[207]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

The prediction accuracy can then be calculated directly from the error:

_ TP+IN
FP+FN +TP+TN

ACC =1-ERR

The True positive rate (TPR) and False positive rate (FPR) are performance metrics
that are especially useful for imbalanced class problems:

FpR=LL_ TP
N FP+TN
pr=I__TP
P FN+TP

In tumor diagnosis, for example, we are more concerned about the detection

of malignant tumors in order to help a patient with the appropriate treatment.
Howvever, it is also important to decrease the number of benign tumors that were
incorrectly classified as malignant (FPs) to not unnecessarily concern a patient.

In contrast to the FPR, the TPR provides useful information about the fraction of
positive (or relevant) samples that were correctly identified out of the total pool of
positives (P).

The performance metrics precision (PRE) and recall (REC) are related to those true
positive and negative rates, and in fact, REC is synonymous with TPR:

pRE:L

TP+ FP
REC:TPR:E:L
P FN+TP

In practice, often a combination of PRE and REC is used, the so-called F1-score:

| _ o PREXREC
PRE + REC

[208]

Chapter 6

Those scoring metrics are all implemented in scikit-learn and can be imported from
the sklearn.metrics module as shown in the following snippet:

>>> from sklearn.metrics import precision score
>>> from sklearn.metrics import recall score, fl score

>>> print ('Precision: %.3f' % precision score(
y true=y test, y pred=y pred))

Precision: 0.976

>>> print ('Recall: %.3f' % recall score(

c.. y _true=y test, y pred=y pred))

Recall: 0.952

>>> print ('Fl: %.3f' % f£1 score(

c.. y _true=y test, y pred=y pred))
Fl: 0.964

Furthermore, we can use a different scoring metric than accuracy in the

GridSearchcv via the scoring parameter. A complete list of the different values that

are accepted by the scoring parameter can be found at http://scikit-learn.org/

stable/modules/model evaluation.html.

Remember that the positive class in scikit-learn is the class that is labeled as class 1.
If we want to specify a different positive label, we can construct our own scorer via
the make_scorer function, which we can then directly provide as an argument to
the scoring parameter in Gridsearchcv (in this example, using the £1_score as a
metric):

>>> from sklearn.metrics import make scorer, fl score
>>> scorer = make scorer (fl score, pos label=0)
>>> gs = GridSearchCV(estimator=pipe svc,
param grid=param grid,
scoring=scorer,
cv=10)
>>> gs = gs.fit (X train, y train)
>>> print (gs.best score)
0.986202145696
>>> print (gs.best params)
{rsve_C': 10.0, 'svc__gamma': 0.01, 'svc__kernel': 'rbf'}

[209]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

Plotting a receiver operating characteristic

Receiver Operating Characteristic (ROC) graphs are useful tools to select models for
classification based on their performance with respect to the FPR and TPR, which are
computed by shifting the decision threshold of the classifier. The diagonal of an ROC
graph can be interpreted as random guessing, and classification models that fall below
the diagonal are considered as worse than random guessing. A perfect classifier
would fall into the top left corner of the graph with a TPR of 1 and an FPR of 0. Based
on the ROC curve, we can then compute the so-called ROC Area Under the Curve
(ROC AUC) to characterize the performance of a classification model.

Similar to ROC curves, we can compute precision-recall curves for different
probability thresholds of a classifier. A function for plotting those precision-recall
curves is also implemented in scikit-learn and is documented at http: //scikit-
learn.org/stable/modules/generated/sklearn.metrics.precision recall
curve.html.

Executing the following code example, we will plot an ROC curve of a classifier that
only uses two features from the Breast Cancer Wisconsin dataset to predict whether
a tumor is benign or malignant. Although we are going to use the same logistic
regression pipeline that we defined previously, we are making the classification task
more challenging for the classifier so that the resulting ROC curve becomes visually
more interesting. For similar reasons, we are also reducing the number of folds in the
StratifiedKFold validator to three. The code is as follows:

>>> from sklearn.metrics import roc curve, auc
>>> from scipy import interp

>>> pipe lr = make pipeline(StandardScaler(),
PCA (n_components=2),
LogisticRegression (penalty="'12",
random_state=1,
C=100.0))

>>> X train2 = X train[:, [4, 14]]
>>> cv = list(StratifiedKFold(n splits=3,
random state=1) .split (X train,
y train))

>>> fig = plt.figure(figsize=(7, 5))

>>> mean_tpr = 0.0

[210]

Chapter 6

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

mean fpr = np.linspace(0, 1, 100)
all tpr = []

for i, (train, test) in enumerate (cv) :
probas = pipe lr.fit (X train2[train],
y_train([train]) .predict proba (X train2[test])
fpr, tpr, thresholds = roc curve(y train[test],
probas[:, 11,
pos_label=1)
mean tpr += interp(mean fpr, fpr, tpr)
mean tpr[0] = 0.0
roc_auc = auc (fpr, tpr)
plt.plot (fpr,
tpr,
label="'ROC fold %d (area = %0.2f)'
% (i+1, roc_auc))
plt.plot ([0, 11,
to, 1],
linestyle='--",
color=(0.6, 0.6, 0.6),
label="'random guessing')

mean tpr /= len(cv)
mean_tpr[-1] = 1.0
mean auc = auc(mean fpr, mean tpr)
plt.plot (mean fpr, mean tpr, 'k--',
label='mean ROC (area = %0.2f)' % mean auc, lw=2)
plt.plot ([0, O, 1],
[o, 1, 11,
linestyle="':",
color="'black',
label='perfect performance')
plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
plt.xlabel ('false positive rate')
plt.ylabel ('true positive rate')
plt.legend(loc="lower right")
plt.show ()

[211]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

In the preceding code example, we used the already familiar stratifiedkFold class
from scikit-learn and calculated the ROC performance of the LogisticRegression
classifier in our pipe 1r pipeline using the roc_curve function from the sklearn.
metrics module separately for each iteration. Furthermore, we interpolated the
average ROC curve from the three folds via the interp function that we imported
from SciPy and calculated the area under the curve via the auc function. The
resulting ROC curve indicates that there is a certain degree of variance between the
different folds, and the average ROC AUC (0.76) falls between a perfect score (1.0)
and random guessing (0.5):

¥ L T R P CPP PP
0.8 4
&
2 0.6
[:H]
>
=
uh
(=]
(=%
g 0
—— ROC faold 1 {area = 0.73)
0.2 - ROC fold 2 {area = 0.78]
' —— ROC fold 3 {area = 0,79)
=== randam quessing
=== mean ROC (area = 0.76)
0.0 «==== perfect performance
0.0 0.2 0.4 0.6 0.8 1.0
false positive rate

Note if we are just interested in the ROC AUC score, we could also directly import
the roc_auc_score function from the sklearn.metrics submodule.

Reporting the performance of a classifier as the ROC AUC can yield further insights
in a classifier's performance with respect to imbalanced samples. However, while
the accuracy score can be interpreted as a single cut-off point on an ROC curve,

A. P. Bradley showed that the ROC AUC and accuracy metrics mostly agree with
each other: The use of the area under the roc curve in the evaluation of machine learning
algorithms, A. P. Bradley, Pattern Recognition, 30(7): 1145-1159, 1997.

[212]

Chapter 6

Scoring metrics for multiclass classification

The scoring metrics that we discussed in this section are specific to binary
classification systems. However, scikit-learn also implements macro and micro
averaging methods to extend those scoring metrics to multiclass problems via
One-versus-All (OvA) classification. The micro-average is calculated from the
individual TPs, TNs, FPs, and FNs of the system. For example, the micro-average
of the precision score in a k-class system can be calculated as follows:

PREmicro = TR+ +TPk
TR+ -+ +TP, +FB +--- + FP,

The macro-average is simply calculated as the average scores of the different
systems:

ppp _ PRE+ - +PRE,

macro k

Micro-averaging is useful if we want to weight each instance or prediction equally,
whereas macro-averaging weights all classes equally to evaluate the overall
performance of a classifier with regard to the most frequent class labels.

If we are using binary performance metrics to evaluate multiclass classification
models in scikit-learn, a normalized or weighted variant of the macro-average is
used by default. The weighted macro-average is calculated by weighting the score of
each class label by the number of true instances when calculating the average. The
weighted macro-average is useful if we are dealing with class imbalances, that is,
different numbers of instances for each label.

While the weighted macro-average is the default for multiclass problems in scikit-
learn, we can specify the averaging method via the average parameter inside the
different scoring functions that we import from the sklearn.metrics module, for
example, the precision score Or make scorer functions:

>>> pre scorer = make scorer (score func=precision score,
pos_label=1,
greater is better=True,
average='micro')

[213]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

Dealing with class imbalance

We've mentioned class imbalances several times throughout this chapter, and yet
we haven't actually discussed how to deal with such scenarios appropriately if they
occur. Class imbalance is a quite common problem when working with real-world
data—samples from one class or multiple classes are over-represented in a dataset.
Intuitively, we can think of several domains where this may occur, such as spam
filtering, fraud detection, or screening for diseases.

Imagine the breast cancer dataset that we've been working with in this chapter
consisted of 90 percent healthy patients. In this case, we could achieve 90 percent
accuracy on the test dataset by just predicting the majority class (benign tumor) for
all samples, without the help of a supervised machine learning algorithm. Thus,
training a model on such a dataset that achieves approximately 90 percent test
accuracy would mean our model hasn't learned anything useful from the features
provided in this dataset.

In this section, we will briefly go over some of the techniques that could help with
imbalanced datasets. But before we discuss different methods to approach this
problem, let's create an imbalanced dataset from our breast cancer dataset, which
originally consisted of 357 benign tumors (class 0) and 212 malignhant tumors (class 1):

>>> X imb = np.vstack ((X[y == 0], X[y == 11[:401]))
0

>>> y imb = np.hstack((yly == 0], yly == 111[:40]))

In the previous code snippet, we took all 357 benign tumor samples and stacked
them with the first 40 malignant samples to create a stark class imbalance. If we were
to compute the accuracy of a model that always predicts the majority class (benign,
class 0), we would achieve a prediction accuracy of approximately 90 percent:

>>> y pred = np.zeros(y imb.shape[0])
>>> np.mean(y pred == y imb) * 100
89.924433249370267

Thus, when we fit classifiers on such datasets, it would make sense to focus on other
metrics than accuracy when comparing different models, such as precision, recall,
the ROC curve—whatever we care most about in our application. For instance, our
priority might be to identify the majority of patients with malignant cancer patients
to recommend an additional screening, then recall should be our metric of choice. In
spam filtering, where we don't want to label emails as spam if the system is not very
certain, precision might be a more appropriate metric.

[214]

Chapter 6

Aside from evaluating machine learning models, class imbalance influences a
learning algorithm during model fitting itself. Since machine learning algorithms
typically optimize a reward or cost function that is computed as a sum over the
training examples that it sees during fitting, the decision rule is likely going to be
biased towards the majority class. In other words, the algorithm implicitly learns
a model that optimizes the predictions based on the most abundant class in the
dataset, in order to minimize the cost or maximize the reward during training.

One way to deal with imbalanced class proportions during model fitting is to
assign a larger penalty to wrong predictions on the minority class. Via scikit-learn,
adjusting such a penalty is as convenient as setting the class_weight parameter to
class_weight="'balanced', which is implemented for most classifiers.

Other popular strategies for dealing with class imbalance include upsampling

the minority class, downsampling the majority class, and the generation of

synthetic training samples. Unfortunately, there's no universally best solution, no
technique that works best across different problem domains. Thus, in practice, it is
recommended to try out different strategies on a given problem, evaluate the results,
and choose the technique that seems most appropriate.

The scikit-learn library implements a simple resample function that can help with
the upsampling of the minority class by drawing new samples from the dataset with
replacement. The following code will take the minority class from our imbalanced
breast cancer dataset (here, class 1) and repeatedly draw new samples from it until it
contains the same number of samples as class label o:

>>> from sklearn.utils import resample

>>> print ('Number of class 1 samples before:',
R X imb[y imb == 1] .shape[0])
Number of class 1 samples before: 40

>>> X upsampled, y upsampled = resample(X imb[y imb == 1],
y imb[y imb == 1],
replace=True,
n samples=X imb[y imb == 0] .shapel[0],
random state=123)
>>> print ('Number of class 1 samples after:',
c.. X upsampled.shape[0])
Number of class 1 samples after: 357

[215]

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

After resampling, we can then stack the original class o samples with the upsampled
class 1 subset to obtain a balanced dataset as follows:

>>> X bal = np.vstack((X[y == 0], X upsampled))
>>> y bal = np.hstack((yly == 0], y upsampled))

Consequently, a majority vote prediction rule would only achieve 50 percent
accuracy:

>>> y pred = np.zeros(y bal.shape[0])
>>> np.mean(y pred == y bal) * 100

Similarly, we could downsample the majority class by removing training examples
from the dataset. To perform downsampling using the resample function, we could
simply swap the class 1 label with class o in the previous code example and vice versa.

Another technique for dealing with class imbalance is the generation
of synthetic training samples, which is beyond the scope of this book.
The probably most widely used algorithm for synthetic training sample
generation is Synthetic Minority Over-sampling Technique (SMOTE),
_and you can learn more about this technique in the original research
& article by Nitesh Chawla and others: SMOTE: Synthetic Minority Over-
L sampling Technique, Journal of Artificial Intelligence Research, 16: 321-357,
2002. It is also highly recommended to check out imbalanced-learn, a
Python library that is entirely focused on imbalanced datasets, including
an implementation of SMOTE. You can learn more about imbalanced-
learnathttps://github.com/scikit-learn-contrib/
imbalanced-learn.

Summary

At the beginning of this chapter, we discussed how to chain different transformation
techniques and classifiers in convenient model pipelines that helped us train and
evaluate machine learning models more efficiently. We then used those pipelines to
perform k-fold cross-validation, one of the essential techniques for model selection
and evaluation. Using k-fold cross-validation, we plotted learning and validation
curves to diagnose the common problems of learning algorithms, such as overfitting
and underfitting. Using grid search, we further fine-tuned our model. We concluded
this chapter by looking at a confusion matrix and various performance metrics that
can be useful to further optimize a model's performance for a specific problem task.
Now, we should be well-equipped with the essential techniques to build supervised
machine learning models for classification successfully.

[216]

Chapter 6

In the next chapter, we will look at ensemble methods: methods that allow us to
combine multiple models and classification algorithms to boost the predictive
performance of a machine learning system even further.

[217]

Combining Different Models
for Ensemble Learning

In the previous chapter, we focused on the best practices for tuning and evaluating
different models for classification. In this chapter, we will build upon these
techniques and explore different methods for constructing a set of classifiers that can
often have a better predictive performance than any of its individual members. We
will learn how to do the following:

* Make predictions based on majority voting

e Use bagging to reduce overfitting by drawing random combinations of the
training set with repetition

e Apply boosting to build powerful models from weak learners that learn from
their mistakes

Learning with ensembles

The goal of ensemble methods is to combine different classifiers into a meta-
classifier that has better generalization performance than each individual classifier
alone. For example, assuming that we collected predictions from 10 experts,
ensemble methods would allow us to strategically combine these predictions by the
10 experts to come up with a prediction that is more accurate and robust than the
predictions by each individual expert. As we will see later in this chapter, there are
several different approaches for creating an ensemble of classifiers. In this section, we
will introduce a basic perception of how ensembles work and why they are typically
recognized for yielding a good generalization performance.

[219]

Combining Different Models for Ensemble Learning

In this chapter, we will focus on the most popular ensemble methods that use the
majority voting principle. Majority voting simply means that we select the class
label that has been predicted by the majority of classifiers, that is, received more than
50 percent of the votes. Strictly speaking, the term majority vote refers to binary
class settings only. However, it is easy to generalize the majority voting principle to
multi-class settings, which is called plurality voting. Here, we select the class label
that received the most votes (mode). The following diagram illustrates the concept
of majority and plurality voting for an ensemble of 10 classifiers where each unique
symbol (triangle, square, and circle) represents a unique class label:

00000000 OO® Lninmy
000000 LLAAA Majority

Q@OOOAAAITI] Puniy

Using the training set, we start by training m different classifiers (C,, ...,C,).
Depending on the technique, the ensemble can be built from different classification
algorithms, for example, decision trees, support vector machines, logistic regression
classifiers, and so on. Alternatively, we can also use the same base classification
algorithm, fitting different subsets of the training set. One prominent example of
this approach is the random forest algorithm, which combines different decision
tree classifiers. The following figure illustrates the concept of a general ensemble
approach using majority voting:

[Training set |

¥

Classification <::|

meodels
|

EIED M3

Predictions .

Final prediction o

[220]

Chapter 7

To predict a class label via simple majority or plurality voting, we combine the
predicted class labels of each individual classifier, C;, and select the class label, 7,
that received the most votes:

P = moa’e{C1 (x).C,(x),....C, (x)}

For example, in a binary classification task where classl=—1 and class2 =+1, we can
write the majority vote prediction as follows:

c(x):sign{icj(x)} { Lif Y, C(x)20

—1 otherwise

To illustrate why ensemble methods can work better than individual classifiers
alone, let's apply the simple concepts of combinatorics. For the following example,
we make the assumption that all n-base classifiers for a binary classification task have
an equal error rate, & . Furthermore, we assume that the classifiers are independent
and the error rates are not correlated. Under those assumptions, we can simply
express the error probability of an ensemble of base classifiers as a probability mass
function of a binomial distribution:

P(y > k) = Z<Z>Sk (1 _0.25)”_1{ = ‘("ensemb/e

Here, (") is the binomial coefficient n choose k. In other words, we compute the
k

probability that the prediction of the ensemble is wrong. Now let's take a look at a

more concrete example of 11 base classifiers (7 =11), where each classifier has an

error rate of 0.25 (¢ =0.25):

/11]
P(yzk)zz<k >o.25k(1—g)“ ‘£ =0.034

k=6

[221]

Combining Different Models for Ensemble Learning

The binomial coefficient

The binomial coefficient refers to the number of ways we can choose
subsets of k unordered elements from a set of size n; thus, it is often called
"n choose k." Since the order does not matter here, the binomial coefficient

is also sometimes referred to as combination or combinatorial number, and in
P its unabbreviated form, it is written as follows:

n!
(n—k)!k!

Here, the symbol (!) stands for factorial—for example, 3!=3x2x1=6.

As we can seeg, the error rate of the ensemble (0.034) is much lower than the error
rate of each individual classifier (0.25) if all the assumptions are met. Note that, in
this simplified illustration, a 50-50 split by an even number of classifiers n is treated
as an error, whereas this is only true half of the time. To compare such an idealistic
ensemble classifier to a base classifier over a range of different base error rates, let's
implement the probability mass function in Python:

>>> from scipy.misc import comb
>>> import math
>>> def ensemble error(n classifier, error):
k_start = int(math.ceil(n classifier / 2.))
probs = [comb(n classifier, k) *
error**k *
(1-error)** (n classifier - k)
for k in range(k start, n classifier + 1)]
return sum(probs)
>>> ensemble error(n classifier=11, error=0.25)
0.034327507019042969

After we have implemented the ensemble error function, we can compute the
ensemble error rates for a range of different base errors from 0.0 to 1.0 to visualize
the relationship between ensemble and base errors in a line graph:

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> error range = np.arange(0.0, 1.01, 0.01)

>>> ens_errors = [ensemble error(n classifier=11, error=error)

for error in error range]

[222]

Chapter 7

>>>

>>>

>>>

>>>

>>>

plt

plt

plt

plt

plt

.plot (error_range, ens_errors,

label="'Ensemble error',
linewidth=2)

.plot (error_range, error range,

linestyle='--', label='Base error',
linewidth=2)

.xlabel ('Base error')

.ylabel ('Base/Ensemble error')
plt.
.grid(alpha=0.5)
plt.

legend(loc="upper left')

show ()

As we can see in the resulting plot, the error probability of an ensemble is always
better than the error of an individual base classifier, as long as the base classifiers
perform better than random guessing (& < 0.5). Note that the y-axis depicts the base
error (dotted line) as well as the ensemble error (continuous line):

Base/Ensemble error

1049 — Ensemble error

=== Base error 1

-

0.8 4 o
0.6 4
0.4 4
0.2 9
0.0 4

0.0 0.2 0.4 0.6 0.8 1.0

Base errar

[223]

Combining Different Models for Ensemble Learning

Combining classifiers via majority vote

After the short introduction to ensemble learning in the previous section, let's start
with a warm-up exercise and implement a simple ensemble classifier for majority
voting in Python.

. Although the majority voting algorithm that we will discuss in this
% section also generalizes to multi-class settings via plurality voting,
o we will use the term majority voting for simplicity, as it is also
often done in the literature.

Implementing a simple majority vote classifier

The algorithm that we are going to implement in this section will allow us to
combine different classification algorithms associated with individual weights
for confidence. Our goal is to build a stronger meta-classifier that balances out
the individual classifiers' weaknesses on a particular dataset. In more precise
mathematical terms, we can write the weighted majority vote as follows:

j/:argmlaxij;(A (Cj(x)zi)
j=1

Here, w; isa weight associated with a base classifier, C,, ¥ is the predicted class

label of the ensemble, Z4 (Greek chi) is the characteristic function [C}, (x)=ie A], and
A is the set of unique class labels. For equal weights, we can simplify this equation
and write it as follows:

5 = mode{C ()€, ()Co ()

In statistics, the mode is the most frequent event or result in a set.
i For example, mode{1,2,1 1,2,4,5,4} = 1.

[224]

Chapter 7

To better understand the concept of weighting, we will now take a look at a more
concrete example. Let us assume that we have an ensemble of three base classifiers,
C (je {0,1}), and want to predict the class label of a given sample instance, x. Two
out of three base classifiers predict the class label 0, and one, C;, predicts that the
sample belongs to class 1. If we weight the predictions of each base classifier equally,
the majority vote would predict that the sample belongs to class 0:

C(x)>0,C(x)>0,C(x)>1
y= mode{0,0,l} =0

Now, let us assign a weight of 0.6 to C, and weight C, and C, by a coefficient of 0.2:
y= argmiaxij;(A (Cj (x)= i)
=
=argmax[0.2xi, +0.2xi, +0.6xi] =1

More intuitively, since 3 x 0.2 = 0.6, we can say that the prediction made by C, has
three times more weight than the predictions by C, or C,, which we can write as
follows:

y= mode{O, 0,1,1,1} =1

To translate the concept of the weighted majority vote into Python code, we can use
NumPy's convenient argmax and bincount functions:

>>> import numpy as np

>>> np.argmax (np.bincount ([0, 0, 1],

. weights=[0.2, 0.2, 0.6]))
1

[225]

Combining Different Models for Ensemble Learning

As we remember from the discussion on logistic regression in Chapter 3, A Tour of
Machine Learning Classifiers Using scikit-learn, certain classifiers in scikit-learn can
also return the probability of a predicted class label via the predict proba method.
Using the predicted class probabilities instead of the class labels for majority voting
can be useful if the classifiers in our ensemble are well calibrated. The modified
version of the majority vote for predicting class labels from probabilities can be
written as follows:

m
y=arg m?x Z ijy
J=1

Here, p; is the predicted probability of the jth classifier for class label i.

To continue with our previous example, let's assume that we have a binary
classification problem with class labels i € {0,1} and an ensemble of three classifiers
C,(j€{1,2,3}). Let's assume that the classifiers C; return the following class
membership probabilities for a particular sample x:

C,(x)—>[0.9,0.1], G, (x) > [0.8,0.2], C, (x) —[0.4,0.6]

We can then calculate the individual class probabilities as follows:

p(i0 | x) =0.2x0.9+0.2x0.8+0.6x0.4=0.58

p(i | x)=0.2x0.1+0.2x0.2+0.6x 0.6 = 0.42

j/=argmlax[p(i0|x),p(i1 |x)}:0

To implement the weighted majority vote based on class probabilities, we can again
make use of NumPy using numpy . average and np . argmax:

>>> ex = np.array([[0.9, 0.1],
[0.8, 0.2],
[0.4, 0.6]11])
>>> p = np.average (ex, axis=0, weights=[0.2, 0.2, 0.6])
>>> p
array ([0.58, 0.42])
>>> np.argmax (p)
0

[226]

Chapter 7

Putting everything together, let's now implement MajorityvoteClassifier
in Python:

from sklearn.base import BaseEstimator

from sklearn.base import ClassifierMixin

from sklearn.preprocessing import LabelEncoder
from sklearn.externals import six

from sklearn.base import clone

from sklearn.pipeline import name estimators
import numpy as np

import operator

class MajorityVoteClassifier (BaseEstimator,
ClassifierMixin) :
"mrA majority vote ensemble classifier

Parameters
classifiers : array-like, shape = [n classifiers]
Different classifiers for the ensemble

vote : str, {'classlabel', 'probability'}
Default: 'classlabel!
If 'classlabel' the prediction is based on
the argmax of class labels. Else if
'probability', the argmax of the sum of
probabilities is used to predict the class label
(recommended for calibrated classifiers).

weights : array-like, shape = [n classifiers]
Optional, default: None
If a list of “int”~ or “float™ values are
provided, the classifiers are weighted by
importance; Uses uniform weights if “weights=None~.

nun

def init (self, classifiers,
vote='classlabel', weights=None) :

self.classifiers = classifiers
self.named classifiers = {key: value for
key, value in
_name_estimators(classifiers)}
self.vote = vote

[227]

Combining Different Models for Ensemble Learning

def

self.weights = weights

fit (self, X, y):
nen Fit classifiers.

Parameters
X : {array-like, sparse matrix},
shape = [n samples, n features]

Matrix of training samples.

y : array-like, shape = [n samples]
Vector of target class labels.

Returns

self : object

nnn

Use LabelEncoder to ensure class labels start
with 0, which is important for np.argmax
call in self.predict

self.lablenc = LabelEncoder ()
self.lablenc_.fit (y)

self.classes_ = self.lablenc_.classes_
self.classifiers = []

for clf in self.classifiers:
fitted clf = clone(clf) .fit (X,
self.lablenc .transform(y))
self.classifiers .append(fitted clf)
return self

I've added a lot of comments to the code to explain the individual parts. However,
before we implement the remaining methods, let's take a quick break and discuss
some of the code that may look confusing at first. We used the BaseEstimator and
ClassifierMixin parent classes to get some base functionality for free, including the
get_params and set_params methods to set and return the classifier's parameters,
as well as the score method to calculate the prediction accuracy. Also note that we
imported six to make MajorityvoteClassifier compatible with Python 2.6.

[228]

Chapter 7

Next, we will add the predict method to predict the class label via a majority vote
based on the class labels if we initialize a new MajorityvoteClassifier object
with vote="'classlabel'. Alternatively, we will be able to initialize the ensemble
classifier with vote="'probability' to predict the class label based on the class
membership probabilities. Furthermore, we will also add a predict_proba method
to return the averaged probabilities, which is useful when computing the ROC AUC:

def predict(self, X):
"nm pPredict class labels for X.

Parameters
X : {array-like, sparse matrix},
Shape = [n_samples, n_ features]

Matrix of training samples.

maj vote : array-like, shape = [n_samples]
Predicted class labels.

nnn

if self.vote == 'probability':
maj vote = np.argmax(self.predict proba (X),
axis=1)
else: # 'classlabel' vote

Collect results from clf.predict calls
predictions = np.asarray([clf.predict (X)
for clf in
self.classifiers]).T

maj vote = np.apply along axis(
lambda x:
np.argmax (np.bincount (x,
weights=self.weights)),
axis=1,
arr=predictions)
maj_vote = self.lablenc_.inverse_ transform(maj_vote)
return maj_ vote

def predict proba(self, X):

[229]

Combining Different Models for Ensemble Learning

def

mnn predict class probabilities for X.

Parameters
X : {array-like, sparse matrix},
shape = [n samples, n features]

Training vectors, where n_samples is
the number of samples and
n features is the number of features.

Returns
avg proba : array-like,
shape = [n_samples, n _classes]

Weighted average probability for
each class per sample.

nnn

probas = np.asarray([clf.predict proba (X)
for clf in self.classifiers])
avg proba = np.average (probas,
axis=0, weights=self.weights)
return avg_ proba

get params (self, deep=True) :
"wn Get classifier parameter names for GridSearch"""
if not deep:
return super (MajorityVoteClassifier,
self) .get params (deep=False)
else:
out = self.named classifiers.copy ()
for name, step in\
six.iteritems (self.named classifiers):
for key, value in six.iteritems(
step.get params (deep=True)) :
out['%s_ %s' % (name, key)] = value
return out

[230]

Chapter 7

Also, note that we defined our own modified version of the get params method to
use the _name_estimators function to access the parameters of individual classifiers
in the ensemble; this may look a little bit complicated at first, but it will make perfect
sense when we use grid search for hyperparameter tuning in later sections.

Although the MajorityVoteClassifier implementation is
. very useful for demonstration purposes, we implemented a more
sophisticated version of this majority vote classifier in scikit-learn based
=~ on the implementation in the first edition of this book. The ensemble
classifier is available as sklearn.ensemble.VotingClassifier in
scikit-learn version 0.17 and newer.

Using the majority voting principle to make
predictions

Now it is about time to put the MajorityvoteClassifier that we implemented in
the previous section into action. But first, let's prepare a dataset that we can test it

on. Since we are already familiar with techniques to load datasets from CSV files,

we will take a shortcut and load the Iris dataset from scikit-learn's dataset module.
Furthermore, we will only select two features, sepal width and petal length, to

make the classification task more challenging for illustration purposes. Although our
MajorityVoteClassifier generalizes to multiclass problems, we will only classify
flower samples from the Iris-versicolor and Iris-virginica classes, with which
we will compute the ROC AUC later. The code is as follows:

>>> from sklearn import datasets

>>> from sklearn.model selection import train test split
>>> from sklearn.preprocessing import StandardScaler

>>> from sklearn.preprocessing import LabelEncoder

>>> iris = datasets.load iris()

>>> X, y = iris.data[50:, [1, 2]], iris.target[50:]

>>> le = LabelEncoder ()

>>> y = le.fit transform(y)

[231]

Combining Different Models for Ensemble Learning

Note that scikit-learn uses the predict_proba method (if applicable)
to compute the ROC AUC score. In Chapter 3, A Tour of Machine Learning
Classifiers Using scikit-learn, we saw how the class probabilities are
computed in logistic regression models. In decision trees, the probabilities
are calculated from a frequency vector that is created for each node
. attraining time. The vector collects the frequency values of each class
a label computed from the class label distribution at that node. Then, the
L frequencies are normalized so that they sum up to 1. Similarly, the class

labels of the k-nearest neighbors are aggregated to return the normalized
class label frequencies in the k-nearest neighbors algorithm. Although the
normalized probabilities returned by both the decision tree and k-nearest
neighbors classifier may look similar to the probabilities obtained from a
logistic regression model, we have to be aware that these are actually not
derived from probability mass functions.

Next, we split the Iris samples into 50 percent training and 50 percent test data:

>>> X train, X test, y train, y test =\
train test split(X, vy,
test size=0.5,
random_state=1,
stratify=y)

Using the training dataset, we now will train three different classifiers:

e Logistic regression classifier
* Decision tree classifier
e k-nearest neighbors classifier

We then evaluate the model performance of each classifier via 10-fold cross-
validation on the training dataset before we combine them into an ensemble
classifier:

>>> from sklearn.model selection import cross_val score
>>> from sklearn.linear model import LogisticRegression
>>> from sklearn.tree import DecisionTreeClassifier
>>> from sklearn.neighbors import KNeighborsClassifier
>>> from sklearn.pipeline import Pipeline
>>> import numpy as np
>>> clfl = LogisticRegression(penalty='12",
C=0.001,
random_state=1)
>>> clf2 = DecisionTreeClassifier (max depth=1,
criterion='entropy',
random state=0)

[232]

Chapter 7

>>> clf3 = KNeighborsClassifier (n neighbors=1,
p=2,
metric="'minkowski')
>>> pipel = Pipeline([['sc', StandardScaler ()],
[tclf', clf1]])
>>> pipe3 = Pipeline([['sc', StandardScaler()],
['elf', clf3]])
>>> clf labels = ['Logistic regression', 'Decision tree', 'KNN']
>>> print ('10-fold cross validation:\n')
>>> for clf, label in zip([pipel, clf2, pipe3], clf labels):
scores = cross_val score(estimator=clf,
X=X train,
y=y train,
cv=10,
scoring='roc_auc')
print ("ROC AUC: %0.2f (+/- %0.2f) [%s]"

)

% (scores.mean(), scores.std(), label))

The output that we receive, as shown in the following snippet, shows that the
predictive performances of the individual classifiers are almost equal:

10-fold cross validation:
ROC AUC: 0.87 (+/- 0.17) [Logistic regression]

ROC AUC: 0.89 (+/- 0.16) [Decision tree]
ROC AUC: 0.88 (+/- 0.15) [KNN]

You may be wondering why we trained the logistic regression and k-nearest neighbors
classifier as part of a pipeline. The reason behind it is that, as discussed in Chapter 3,

A Tour of Machine Learning Classifiers Using scikit-learn, both the logistic regression and
k-nearest neighbors algorithms (using the Euclidean distance metric) are not scale-
invariant, in contrast to decision trees. Although the Iris features are all measured on

the same scale (cm), it is a good habit to work with standardized features.

Now let's move on to the more exciting part and combine the individual classifiers

for majority rule voting in our MajorityvoteClassifier:

>>> mv_clf = MajorityVoteClassifier(
... classifiers=[pipel, clf2, pipe3])
>>> clf labels += ['Majority voting']
>>> all clf = [pipel, clf2, pipe3, mv_clf]
>>> for clf, label in zip(all clf, clf labels):
scores = cross_val score(estimator=clf,
X=X train,
y=y train,

[233]

Combining Different Models for Ensemble Learning

cv=10,
scoring='roc_auc')
print ("Accuracy: %0.2f (+/- %0.2f) [%s]"

L. % (scores.mean(), scores.std(), label))
ROC AUC: 0.87 (+/- 0.17) [Logistic regression]

ROC AUC: 0.89 (+/- 0.16) [Decision tree]

ROC AUC: 0.88 (+/- 0.15) [KNN]

ROC AUC: 0.94 (+/- 0.13) [Majority voting]

As we can see, the performance of MajorityvotingClassifier has improved over
the individual classifiers in the 10-fold cross-validation evaluation.

Evaluating and tuning the ensemble classifier

In this section, we are going to compute the ROC curves from the test set to check that
MajorityVoteClassifier generalizes well with unseen data. We shall remember
that the test set is not to be used for model selection; its purpose is merely to report an
unbiased estimate of the generalization performance of a classifier system:

>>> from sklearn.metrics import roc_ curve
>>> from sklearn.metrics import auc
>>> colors = ['black', 'orange', 'blue', 'green']
>>> linestyles = [':', '--', '-.', '-']
>>> for clf, label, clr, 1ls \
in zip(all clf, clf labels, colors, linestyles):
assuming the label of the positive class is 1
y pred = clf.fit (X train,
y _train) .predict proba(X test) [:, 1]
fpr, tpr, thresholds = roc curve(y true=y test,
y_score=y pred)
roc_auc = auc (x=fpr, y=tpr)
plt.plot (fpr, tpr,
color=clr,
linestyle=1ls,
.. label='%s (auc = %0.2f)' % (label, roc_auc))
>>> plt.legend(loc='lower right')
>>> plt.plot ([0, 1], [0, 1],
linestyle='--",
color="gray',
.. linewidth=2)
>>> plt.xlim([-0.1, 1.1])
>>> plt.ylim([-0.1, 1.1])
>>> plt.grid(alpha=0.5)

[234]

Chapter 7

>>> plt.xlabel ('False positive rate (FPR)')
>>> plt.ylabel ('True positive rate (TPR)')
>>> plt.show()

As we can see in the resulting ROC, the ensemble classifier also performs well on the
test set (ROC AUC = 0.95). However, we can see that the logistic regression classifier
performs similarly well on the same dataset, which is probably due to the high

variance (in this case, sensitivity of how we split the dataset) given the small size of
the dataset:

1.0' s L2 | = p———
: = onan g
-— 4+ — A -
s _.a’
e 0.8 1 -
E P
w d"'r.
= 0.6 1 -
[; -
1] -
5= | F
T 0.4 i >
L .-‘f
o j 1# = =
E 0.2 - [L ===+ Logistic regression (auc = 0.95)
’ - #ff Decision tree (auc = 0.90)
E,f —-= KNN {auc = 0.86)
0.0 1 —— Majority veting (auc = 0.95)
0.0 0.2 0.4 0.6 0.8 1.0
False positive rate (FPR)

Since we only selected two features for the classification examples, it would be
interesting to see what the decision region of the ensemble classifier actually looks
like. Although it is not necessary to standardize the training features prior to model
fitting, because our logistic regression and k-nearest neighbors pipelines will
automatically take care of it, we will standardize the training set so that the decision

regions of the decision tree will be on the same scale for visual purposes. The code is
as follows:

>>> sc = StandardScaler ()

>>> X train std = sc.fit_transform(X_train)
>>> from itertools import product

>>> x min = X train std[:, 0] .min() - 1

>>> x max = X train std[:, 0] .max() + 1

>>> y min = X train std[:, 1] .min() - 1

[235]

Combining Different Models for Ensemble Learning

>>> y max = X train std[:, 1] .max() + 1

>>>

= np.meshgrid(np.arange (x min, x max, 0.1),

np.arange(y min, y max, 0.1))
= plt.subplots (nrows=2, ncols=2,
sharex="'col"',
sharey='row',
figsize=(7, 5))
clf, tt in zip(product ([0, 1], [0, 11),
all clf, clf labels):

clf.fit (X train std, y_train)
clf.predict (np.c [xx.ravel(), yy.ravel()])

Z.reshape (xx.shape)

axarr [idx[0], idx[1]].contourf (xx, yy, Z, alpha=0.3)
axarr [idx[0], idx[1]].scatter(X train stdl[y train==0, 0],

X train_std[y train==0, 1],
c='blue"',

marker='"",

s=50)

axarr[idx[0], idx[1]].scatter(X train stdl[y train==1, 0],

X train_std[y train==1, 1],
c='green',

marker='o",

s=50)

axarr [idx[0], idx[1]].set_title(tt)

>>> plt.text(-3.5, -4.5,

>>> plt.text (

>>> plt.show()

s='Sepal width [standardized]',
ha='center', va='center', fontsize=12)
-10.5, 4.5,

s='Petal length [standardized]',
ha='center', va='center',

fontsize=12, rotation=90)

Interestingly, but also as expected, the decision regions of the ensemble classifier
seem to be a hybrid of the decision regions from the individual classifiers. At first
glance, the majority vote decision boundary looks a lot like the decision of the
decision tree stump, which is orthogonal to the y axis for sepal width >1. However,
we also notice the non-linearity from the k-nearest neighbor classifier mixed in:

[236]

Chapter 7

Loql*;tll:__regressl:un _ Decls.h:_m tree

2 s
_ o %0,
N
by &
= & '
L -2] ‘ |
2 A
n -
5 KNM
o
g
8, s d
B
&

ﬁ .

_;! r

Sepal width [standardized)

Before we tune the individual classifier's parameters for ensemble classification, let's
call the get _params method to get a basic idea of how we can access the individual
parameters inside a GridSearch object:

>>> mv_clf.get params /()
{'decisiontreeclassifier': DecisionTreeClassifier (class_weight=None,
criterion='entropy', max_depth=1,
max_ features=None,
max_leaf nodes=None,
min_ samples leaf=1,
min samples split=2, min weight fraction leaf=0.0,
random_state=0, splitter='best'),
'decisiontreeclassifier class_weight': None,
'decisiontreeclassifier criterion': 'entropy',
[...]
'decisiontreeclassifier random state': 0,
'decisiontreeclassifier splitter': 'best',
'pipeline-1': Pipeline(steps=[('sc', StandardScaler (copy=True,
with mean=True, with std=True)), ('clf', LogisticRegression(C=0.001,
class_weight=None, dual=False, fit intercept=True,
intercept scaling=1, max iter=100, multi class='ovr',
penalty='12"', random state=0, solver='liblinear', tol=0.0001,
verbose=0))1),

[237]

Combining Different Models for Ensemble Learning

'pipeline-1 clf': LogisticRegression(C=0.001, class weight=None,

dual=False, EIt_intercept:True, h
intercept scaling=1, max iter=100, multi class='ovr',
penalty='12"', random state=0, solver='liblinear',

£01=0.0001, B
verbose=0) ,

'pipeline-1 clf C': 0.001,

'pipeline-1_ clf_ class_weight': None,

'pipeline-1_ clf dual': False,

[...]

'pipeline-1 sc_ with std': True,

'pipeline-2': Pipeline(steps=[('sc', StandardScaler (copy=True, with
mean=True, with std=True)), ('clf', KNeighborsClassifier(algorithm:'gu
to', leaf size=30, metric='minkowski',

metric params=None, n neighbors=1, p=2,
weights:'uniform')?]), -

'pipeline-2 clf': KNeighborsClassifier (algorithm='auto', leaf
size=30, metric='minkowski',

metric_params=None, n neighbors=1, p=2,
weights="uniform'),

'pipeline-2 clf algorithm': 'auto',

[...]

'pipeline-2 sc_ with std': True}

Based on the values returned by the get params method, we now know how to
access the individual classifier's attributes. Let's now tune the inverse regularization
parameter C of the logistic regression classifier and the decision tree depth via a grid
search for demonstration purposes:

>>> from sklearn.model selection import GridSearchCVv
>>> params = {'decisiontreeclassifier__max_depth': [1, 21,
'pipeline-1 clf C': [0.001, 0.1, 100.0]}
>>> grid = GridSearchCV(estimator=mv_ clf,
param grid=params,
cv=10,
scoring='roc_auc')
>>> grid.fit (X train, y train)

After the grid search has completed, we can print the different hyperparameter
value combinations and the average ROC AUC scores computed via 10-fold cross-
validation as follows:

>>> for params, mean score, scores in grid.grid scores :
print ("%$0.3f+/-%0.2f %r"

°

% (mean score, scores.std() / 2, params))

[238]

Chapter 7

0.933 +/- 0.07 {'pipeline-1_clf C': 0.001, 'decisiontreeclassifier
max_depth': 1}

0.947 +/- 0.07 {'pipeline-1_clf C': 0.1, 'decisiontreeclassifier
max_depth': 1}

0.973 +/- 0.04 {'pipeline-1_ clf C': 100.0, 'decisiontreeclassifier
max _depth': 1}

0.947 +/- 0.07 {'pipeline-1_ clf C': 0.001, 'decisiontreeclassifier
max_depth': 2}

0.947 +/- 0.07 {'pipeline-1_ clf C': 0.1, 'decisiontreeclassifier
max_depth': 2}

0.973 +/- 0.04 {'pipeline-1_ clf C': 100.0, 'decisiontreeclassifier
max_depth': 2}

>>> print ('Best parameters: %s' % grid.best params)

Best parameters: {'pipeline-1_ clf C': 100.0,
'decisiontreeclassifier max depth': 1}

>>> print ('Accuracy: %.2f' % grid.best score)
Accuracy: 0.97

As we can see, we get the best cross-validation results when we choose a lower
regularization strength (c=100. 0), whereas the tree depth does not seem to affect the
performance at all, suggesting that a decision stump is sufficient to separate the data.
To remind ourselves that it is a bad practice to use the test dataset more than once
for model evaluation, we are not going to estimate the generalization performance of
the tuned hyperparameters in this section. We will move on swiftly to an alternative
approach for ensemble learning: bagging.

The majority vote approach we implemented in this section is not to
be confused with stacking. The stacking algorithm can be understood
as a two-layer ensemble, where the first layer consists of individual
classifiers that feed their predictions to the second level, where another
classifier (typically logistic regression) is fit to the level-1 classifier
predictions to make the final predictions. The stacking algorithm
- has been described in more detail by David H. Wolpert in Stacked
% generalization, Neural Networks, 5(2):241-259, 1992.
s

Unfortunately, an implementation of this algorithm has not been
implemented in scikit-learn at the time of writing; however, this feature
is under way. In the meantime, you can find scikit-learn-compatible
implementations of stacking at http://rasbt.github.io/
mlxtend/user guide/classifier/StackingClassifier/ and
http://rasbt.github.io/mlxtend/user guide/classifier/
StackingCvVClassifier/.

[239]

Combining Different Models for Ensemble Learning

Bagging — building an ensemble of
classifiers from bootstrap samples

Bagging is an ensemble learning technique that is closely related to the
MajorityVoteClassifier that we implemented in the previous section. However,
instead of using the same training set to fit the individual classifiers in the ensemble,
we draw bootstrap samples (random samples with replacement) from the initial
training set, which is why bagging is also known as bootstrap aggregating.

The concept of bagging is summarized in the following diagram:

Boccsry

samples
=
]
Classification <:| =
models E‘
Predictions

Final prediction

In the following subsections, we will work through a simple example of bagging by
hand and use scikit-learn for classifying wine samples.

Bagging in a nutshell

To provide a more concrete example of how the bootstrapping aggregating of a
bagging classifier works, let's consider the example shown in the following figure.
Here, we have seven different training instances (denoted as indices 1-7) that are
sampled randomly with replacement in each round of bagging. Each bootstrap
sample is then used to fit a classifier C;, which is most typically an unpruned

decision tree:

[240]

Chapter 7

sample Bagging Bagging

indices raund | round 2

I 2 T

2 2 3

3 | 2

4 3 I

L 7 I

] 2 7

7 4 7 .

Cr < Ca

As we can see from the previous illustration, each classifier receives a random subset
of samples from the training set. Each subset contains a certain portion of duplicates
and some of the original samples don't appear in a resampled dataset at all due to
sampling with replacement. Once the individual classifiers are fit to the bootstrap
samples, the predictions are combined using majority voting.

Note that bagging is also related to the random forest classifier that we introduced
in Chapter 3, A Tour of Machine Learning Classifiers Using scikit-learn. In fact, random
forests are a special case of bagging where we also use random feature subsets when
fitting the individual decision trees.

Bagging was first proposed by Leo Breiman in a technical report
_In 1994; he also showed that bagging can improve the accuracy of
% unstable models and decrease the degree of overfitting. I highly
L recommend you read about his research in Bagging predictors, L.
Breiman, Machine Learning, 24(2):123-140, 1996, which is freely
available online, to learn more details about bagging.

[241]

Combining Different Models for Ensemble Learning

Applying bagging to classify samples in the
Wine dataset

To see bagging in action, let's create a more complex classification problem using

the Wine dataset that we introduced in Chapter 4, Building Good Training Sets -- Data
Preprocessing. Here, we will only consider the Wine classes 2 and 3, and we select two
features: Alcohol and 0D280/0D315 of diluted wines:

>>> import pandas as pd

>>> df wine = pd.read csv('https://archive.ics.uci.edu/ml/"'
'machine-learning-databases/wine/wine.data',
header=None)

>>> df wine.columns = ['Class label', 'Alcohol',
'Malic acid', 'Ash',
'Alcalinity of ash',
'Magnesium', 'Total phenols',
'Flavanoids', 'Nonflavanoid phenols',
'Proanthocyanins',
'Color intensity', 'Hue',

'0D280/0D315 of diluted wines',
'Proline']
>>> # drop 1 class
>>> df wine = df wine[df wine['Class label'] != 1]
>>> y = df_wine['Class label'] .values
>>> X = df wine[['Alcohol"',
'0OD280/0D315 of diluted wines']] .values

Next, we encode the class labels into binary format and split the dataset into 80
percent training and 20 percent test sets, respectively:

>>> from sklearn.preprocessing import LabelEncoder

>>> from sklearn.model selection import train test split

>>> le = LabelEncoder ()

>>> y = le.fit transform(y)

>>> X train, X test, y train, y test =\

train test split(X, vy,

test size=0.2,
random_state=1,
stratify=y)

[242]

Chapter 7

You can find a copy of the Wine dataset (and all other datasets used
in this book) in the code bundle of this book, which you can use if
you are working offline or the UCI server at https://archive.
ics.uci.edu/ml/machine-learning-databases/wine/
wine.data is temporarily unavailable. For instance, to load the
Wine dataset from a local directory, take these lines:
df = pd.read _csv('https://archive.ics.uci.edu/ml/"’

'machine-learning-databases'

' /wine/wine.data',

header=None)

Replace them with this:

df = pd.read csv('your/local/path/to/wine.data’,
header=None)

A BaggingClassifier algorithm is already implemented in scikit-learn, which we

can import from the ensemble submodule. Here, we will use an unpruned decision
tree as the base classifier and create an ensemble of 500 decision trees fit on different
bootstrap samples of the training dataset:

>>> from sklearn.ensemble import BaggingClassifier

>>> tree

>>> bag

= DecisionTreeClassifier (criterion='entropy',
random_state=1,
max_depth=None)
BaggingClassifier (base estimator=tree,
n_estimators=500,
max_samples=1.0,
max_features=1.0,
bootstrap=True,
bootstrap_ features=False,
n_jobs=1,
random state=1)

[243]

Combining Different Models for Ensemble Learning

Next, we will calculate the accuracy score of the prediction on the training and test
dataset to compare the performance of the bagging classifier to the performance of a
single unpruned decision tree:

>>> from sklearn.metrics import accuracy score

>>> tree = tree.fit (X train, y_ train)

>>> y train pred = tree.predict (X_train)

>>> y test pred = tree.predict (X test)

>>> tree_train = accuracy score(y_train, y train pred)
>>> tree test = accuracy score(y test, y test pred)

>>> print ('Decision tree train/test accuracies %.3f/%.3f'

% (tree train, tree test))
Decision tree train/test accuracies 1.000/0.833

Based on the accuracy values that we printed here, the unpruned decision
tree predicts all the class labels of the training samples correctly; however, the
substantially lower test accuracy indicates high variance (overfitting) of the model:

>>> bag = bag.fit (X train, y_ train)

>>> y train pred = bag.predict (X train)

>>> y test pred = bag.predict (X test)

>>> bag train = accuracy score(y train, y train pred)
>>> bag test = accuracy score(y test, y test pred)
>>> print ('Bagging train/test accuracies %.3f/%.3f"
.. % (bag train, bag test))
Bagging train/test accuracies 1.000/0.917

Although the training accuracies of the decision tree and bagging classifier are similar
on the training set (both 100 percent), we can see that the bagging classifier has a
slightly better generalization performance, as estimated on the test set. Next, let's
compare the decision regions between the decision tree and the bagging classifier:

>>> x min = X train[:, 0] .min() - 1
>>> x max = X train[:, 0] .max() + 1
>>> y min = X train[:, 1].min() - 1
>>> y max = X train[:, 1] .max() + 1

(

>>> XX, yy = np.meshgrid(np.arange(x min, x max, 0.1),
np.arange (y min, y max, 0.1))

>>> f, axarr = plt.subplots(nrows=1, ncols=2,
sharex='col',
sharey="row',

. figsize=(8, 3))

>>> for idx, clf, tt in zip([O0, 11,
[tree, bagl,
['Decision tree', 'Bagging']):

[244]

Chapter 7

clf.fit (X train, y train)
Z = clf.predict(np.c [xx.ravel(), yy.ravel()])
Z = Z.reshape (xx.shape)
axarr [i1dx] .contourf (xx, yy, Z, alpha=0.3)
axarr [idx] .scatter (X train[y train==0, 0],
X trainly train==0, 1],
c='blue', marker='"")
axarr [idx] .scatter (X train(y train==1, 0],
X trainly train==1, 1],

c='green',
axarr [idx] .set_title(tt)
>>> axarr[0] .set ylabel ('Alcohol',
>>> plt.text(10.2, -1.2,

marker='o")

fontsize=12)

s='0D280/0D315 of diluted wines',

L. ha='center',
>>> plt.show()

va='center',

fontsize=12)

As we can see in the resulting plot, the piece-wise linear decision boundary of the
three-node deep decision tree looks smoother in the bagging ensemble:

Decision tree Bagging
4
Y)
i A
- 3] Lad - Lad a
E & lt & & & -li & &
g o WL ap v AW agpea
= 2

oy

13 1:1 1.5

DD2B0/0D315 of diluted wines

T T T T T

11 12 14 15

We only looked at a very simple bagging example in this section. In practice, more
complex classification tasks and a dataset's high dimensionality can easily lead to
overfitting in single decision trees, and this is where the bagging algorithm can really
play to its strengths. Finally, we shall note that the bagging algorithm can be an
effective approach to reduce the variance of a model. However, bagging is ineffective
in reducing model bias, that is, models that are too simple to capture the trend in the
data well. This is why we want to perform bagging on an ensemble of classifiers with
low bias, for example, unpruned decision trees.

[245]

Combining Different Models for Ensemble Learning

Leveraging weak learners via adaptive
boosting

In this last section about ensemble methods, we will discuss boosting with a special
focus on its most common implementation, AdaBoost (Adaptive Boosting).

The original idea behind AdaBoost was formulated by Robert E.
Schapire in 1990. The Strength of Weak Learnability, R. E. Schapire,
Machine Learning, 5(2): 197-227, 1990. After Robert Schapire and
Yoav Freund presented the AdaBoost algorithm in the Proceedings
of the Thirteenth International Conference (ICML 1996), AdaBoost

% became one of the most widely used ensemble methods in the

s years that followed (Experiments with a New Boosting Algorithm by Y.

Freund, R. E. Schapire, and others, ICML, volume 96, 148-156, 1996).
In 2003, Freund and Schapire received the Goedel Prize for their
groundbreaking work, which is a prestigious prize for the most
outstanding publications in the field of computer science.

In boosting, the ensemble consists of very simple base classifiers, also often referred
to as weak learners, which often only have a slight performance advantage over
random guessing—a typical example of a weak learner is a decision tree stump. The
key concept behind boosting is to focus on training samples that are hard to classify,
that is, to let the weak learners subsequently learn from misclassified training
samples to improve the performance of the ensemble.

The following subsections will introduce the algorithmic procedure behind the
general concept boosting and a popular variant called AdaBoost. Lastly, we will use
scikit-learn for a practical classification example.

How boosting works

In contrast to bagging, the initial formulation of boosting, the algorithm uses random
subsets of training samples drawn from the training dataset without replacement;
the original boosting procedure is summarized in the following four key steps:

1. Draw a random subset of training samples d, without replacement from
training set D to train a weak learner C,.

2. Draw a second random training subset d, without replacement from
the training set and add 50 percent of the samples that were previously
misclassified to train a weak learner C, .

[246]

Chapter 7

3. Find the training samples d, in training set D, which C, and C, disagree
upon, to train a third weak learner C;.

4. Combine the weak learners C,, C,, and C; via majority voting.

As discussed by Leo Breiman (Bias, variance, and arcing classifiers, L. Breiman, 1996),
boosting can lead to a decrease in bias as well as variance compared to bagging
models. In practice, however, boosting algorithms such as AdaBoost are also
known for their high variance, that is, the tendency to overfit the training data (An
improvement of AdaBoost to avoid overfitting, G. Raetsch, T. Onoda, and K. R. Mueller.
Proceedings of the International Conference on Neural Information Processing,
CiteSeer, 1998).

In contrast to the original boosting procedure as described here, AdaBoost uses

the complete training set to train the weak learners where the training samples are
reweighted in each iteration to build a strong classifier that learns from the mistakes
of the previous weak learners in the ensemble. Before we dive deeper into the
specific details of the AdaBoost algorithm, let's take a look at the following figure to
get a better grasp of the basic concept behind AdaBoost:

I
~ e °
® | ®
______________ I
| A
XE.AA XE.: A .
A = TS
[] A 4 ‘: A a
L
X3 Xy
i E e 'R
0o%"™ | %
___________ Lo
4 1 ¥ IA
Xl @ a | ?.: A
Y :* :‘_ “~
@ A:‘- ‘.z A 8
i
X3 X

[247]

Combining Different Models for Ensemble Learning

To walk through the AdaBoost illustration step by step, we start with subfigure 1,
which represents a training set for binary classification where all training samples are
assigned equal weights. Based on this training set, we train a decision stump (shown
as a dashed line) that tries to classify the samples of the two classes (triangles and
circles), as well as possibly by minimizing the cost function (or the impurity score in
the special case of decision tree ensembles).

For the next round (subfigure 2), we assign a larger weight to the two previously
misclassified samples (circles). Furthermore, we lower the weight of the correctly
classified samples. The next decision stump will now be more focused on the training
samples that have the largest weights—the training samples that are supposedly
hard to classify. The weak learner shown in subfigure 2 misclassifies three different
samples from the circle class, which are then assigned a larger weight, as shown in
subfigure 3.

Assuming that our AdaBoost ensemble only consists of three rounds of boosting, we
would then combine the three weak learners trained on different reweighted training
subsets by a weighted majority vote, as shown in subfigure 4.

Now that have a better understanding behind the basic concept of AdaBoost, let's
take a more detailed look at the algorithm using pseudo code. For clarity, we will
denote element-wise multiplication by the cross symbol (x) and the dot-product
between two vectors by a dot symbol (-):
1. Set the weight vector w to uniform weights, where waf =1.
2. Forjin m boosting rounds, do the following:
a. Train a weighted weak learner: C; = train (X, y,w).
b. Predict class labels: y = predict(Cj,X) .

c. Compute weighted error rate: £ =w-(y # y).

- 1-
d. Compute coefficient: «; = 0.510g—g.
&

e. Update weights: w:=wxexp(-a,x jx).

f. Normalize weights to sum to 1: w:= w/ziw, .

m
J=1

3. Compute the final prediction: y = (Z (aj x predict (C}/,,X)) > 0) :

Note that the expression (j; # y) in step 2c refers to a binary vector consisting
of 1s and 0s, where a 1 is assigned if the prediction is incorrect and 0 is assigned
otherwise.

[248]

Chapter 7

Although the AdaBoost algorithm seems to be pretty straightforward, let's walk
through a more concrete example using a training set consisting of 10 training
samples, as illustrated in the following table:

Sample x y Weights ¥(x <= 3.0)? Correct! Updated
indices weights
I 1.0 I . I Yes 0.072
2 20 I 0.1 I Yes 0.072
3 3.0 | 0.l I Yes 0.072
4 4.0 -1 0. -1 Yes 0.072
5 50 -1 . -1 Yes 0.072
] 6.0 -1 . -1 Yes 0.072
7 70 I 0.1 -1 Mo 0167
8 8.0 I 0.1 -1 Mo 0167
? 2.0 | 0.1 -1 Mo 0.167
10 10.0 -1 0.1 -1 Yes 0.072

The first column of the table depicts the sample indices of training samples 1 to 10.
In the second column, we see the feature values of the individual samples, assuming
this is a one-dimensional dataset. The third column shows the true class label, y,,
for each training sample x,, where y, € {1,—1} . The initial weights are shown in the
fourth column; we initialize the weights uniformly (assigning the same constant
value) and normalize them to sum to one. In the case of the 10-sample training set,
we therefore assign 0.1 to each weight w, in the weight vector w. The predicted
class labels y are shown in the fifth column, assuming that our splitting criterion is
x <3.0. The last column of the table then shows the updated weights based on the
update rules that we defined in the pseudo code.

Since the computation of the weight updates may look a little bit complicated at first,
we will now follow the calculation step by step. We start by computing the weighted
error rate ¢ as described in step 2c:

€=0.1x0+0.1x0+0.1x0+0.1x0+0.1x0+0.1x0+0.1x1+0.1x1

+0.1><1+0.1><0=i=0.3
10

[249]

Combining Different Models for Ensemble Learning

Next, we compute the coefficient a,—shown in step 2d—which is later used in
step 2e to update the weights, as well as for the weights in the majority vote
prediction (step 4):

l1-¢

Q; =O.510g(jz0.424

&

After we have computed the coefficient @;, We can now update the weight vector
using the following equation:

w::wxexp(—ajxj;xy)

Here, yx y is an element-wise multiplication between the vectors of the predicted
and true class labels, respectively. Thus, if a prediction y, is correct, v, xy, will
have a positive sign so that we decrease the ith weight, since «;, is a positive
number as well:

0.1xexp(—0.424x1x1) ~ 0.065

Similarly, we will increase the ith weight if 3, predicted the label incorrectly, like this:

0.1xexp(-0.424x1x(~1)) 0.153

Alternatively, it's like this:

0.1x exp(—0.424x(-1)x(1)) ~0.153

After we have updated each weight in the weight vector, we normalize the weights
so that they sum up to one (step 2f):

Here, > w, =7x0.065+3x0.153=0.914.

[250]

Chapter 7

Thus, each weight that corresponds to a correctly classified sample will be reduced
from the initial value of 0.1 to 0.065/0.914 ~0.071 for the next round of boosting.
Similarly, the weights of the incorrectly classified samples will increase from 0.1 to

0.153/0.914=0.167 .

Applying AdaBoost using scikit-learn

The previous subsection introduced AdaBoost in a nutshell. Skipping to the more

practical part, let's now train an AdaBoost ensemble classifier via scikit-learn.

We will use the same Wine subset that we used in the previous section to train
the bagging meta-classifier. Via the base_estimator attribute, we will train the

AdaBoostClassifier on 500 decision tree stumps:

>>> from sklearn.ensemble import AdaBoostClassifier
>>> tree = DecisionTreeClassifier(criterion='entropy',
random_state=1,
max_depth=1)
>>> ada = AdaBoostClassifier (base estimator=tree,
n_estimators=500,
learning rate=0.1,
random_state=1)
>>> tree = tree.fit (X train, y train)
>>> y train pred = tree.predict (X train)
>>> y test pred = tree.predict (X test)
>>> tree train = accuracy score(y train, y train pred)
>>> tree test = accuracy score(y test, y test pred)
>>> print ('Decision tree train/test accuracies %.3f/%.3f'
% (tree train, tree test))
Decision tree train/test accuracies 0.916/0.875

As we can see, the decision tree stump seems to underfit the training data in contrast

to the unpruned decision tree that we saw in the previous section:

>>> ada = ada.fit (X train, y train)

>>> y train pred = ada.predict (X train)

>>> y test pred = ada.predict (X test)

>>> ada_train = accuracy score(y train, y train pred)
>>> ada_test = accuracy_ score(y test, y test pred)
>>> print ('AdaBoost train/test accuracies %.3f/%.3f'
c. % (ada_train, ada_test))

AdaBoost train/test accuracies 1.000/0.917

[251]

Combining Different Models for Ensemble Learning

As we can see, the AdaBoost model predicts all class labels of the training set
correctly and also shows a slightly improved test set performance compared to the
decision tree stump. However, we also see that we introduced additional variance
by our attempt to reduce the model bias—a higher gap between training and test
performance.

Although we used another simple example for demonstration purposes, we can

see that the performance of the AdaBoost classifier is slightly improved compared
to the decision stump and achieved the very similar accuracy scores as the bagging
classifier that we trained in the previous section. However, we shall note that it is
considered bad practice to select a model based on the repeated usage of the test set.
The estimate of the generalization performance may be over-optimistic, which we
discussed in more detail in Chapter 6, Learning Best Practices for Model Evaluation and
Hyperparameter Tuning.

Lastly, let us check what the decision regions look like:

>>> XX, yy = np.meshgrid(np.arange(x min, x max, 0.1),

>>> x min = X train([:, 0] .min() - 1
>>> x max = X train[:, 0] .max() + 1
>>> y min = X train[:, 1].min() - 1
>>> y max = X train[:, 1] .max() + 1
(
(

np.arange(y min, y max, 0.1))
>>> f, axarr = plt.subplots(l, 2,
sharex='col',
sharey="row',
figsize=(8, 3))
>>> for idx, clf, tt in zip ([0, 11,
[tree, ada],
['Decision Tree', 'AdaBoost']):
clf.fit (X train, y train)
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape (xx.shape)
axarr [idx] .contourf (xx, yy, Z, alpha=0.3)
axarr[idx] .scatter (X train[y train==0, 0],
X trainly train==0, 1],
c="'blue',
marker='"")
axarr [idx] .scatter (X trainy train==1, 0],
X trainly train==1, 1],
c='red',
marker='o")
axarr [idx] .set title(tt)

[252]

Chapter 7

axarr [0] .set ylabel ('Alcohol', fontsize=12)
>>> plt.text (10.2, -0.5,
s='0D280/0D315 of diluted wines',
ha="'center',
va='center',
c.. fontsize=12)
>>> plt.show()

By looking at the decision regions, we can see that the decision boundary of the
AdaBoost model is substantially more complex than the decision boundary of the
decision stump. In addition, we note that the AdaBoost model separates the feature
space very similarly to the bagging classifier that we trained in the previous section:

Decision tree AdaBoost

53' a:t*i’: 1 a .141‘;

Ky Y o

1.I.Iil. 1.1' 1.3 1I4 1‘5 lll 1.2 1I3 14 1I5
OD2BO/OD315 of diluted wines

As concluding remarks about ensemble techniques, it is worth noting that ensemble
learning increases the computational complexity compared to individual classifiers.
In practice, we need to think carefully about whether we want to pay the price

of increased computational costs for an often relatively modest improvement in
predictive performance.

An often-cited example of this trade-off is the famous $1 million Netflix Prize, which
was won using ensemble techniques. The details about the algorithm were published
in The BigChaos Solution to the Netflix Grand Prize by A. Toescher, M. Jahrer, and R. M.
Bell, Netflix prize documentation, 2009, which is available at http://www.stat.osu.
edu/~dmsl/GrandPrize2009 BPC BigChaos.pdf. The winning team received the $1
million grand prize money; however, Netflix never implemented their model due to
its complexity, which made it infeasible for a real-world application:

"We evaluated some of the new methods offline but the additional accuracy gains that
we measured did not seem to justify the engineering effort needed to bring them into a
production environment.” (http://techblog.netflix.com/2012/04/netflix-
recommendations-beyond-5-stars.html).

[253]

Combining Different Models for Ensemble Learning

Summary

In this chapter, we looked at some of the most popular and widely used techniques
for ensemble learning. Ensemble methods combine different classification models
to cancel out their individual weaknesses, which often results in stable and well-
performing models that are very attractive for industrial applications as well as
machine learning competitions.

At the beginning of this chapter, we implemented MajorityvoteClassifier in
Python, which allows us to combine different algorithms for classification. We then
looked at bagging, a useful technique to reduce the variance of a model by drawing
random bootstrap samples from the training set and combining the individually
trained classifiers via majority vote. Lastly, we learned about AdaBoost, which is an
algorithm that is based on weak learners that subsequently learn from mistakes.

Throughout the previous chapters, we learned a lot about different learning
algorithms, tuning, and evaluation techniques. In the next chapter, we will look at a
particular application of machine learning, sentiment analysis, which has become an
interesting topic in the internet and social media era.

[254]

Applying Machine Learning
to Sentiment Analysis

In this internet and social media age, people's opinions, reviews, and
recommendations have become a valuable resource for political science and
businesses. Thanks to modern technologies, we are now able to collect and analyze
such data most efficiently. In this chapter, we will delve into a subfield of Natural
Language Processing (NLP) called sentiment analysis and learn how to use machine
learning algorithms to classify documents based on their polarity: the attitude of the
writer. In particular, we are going to work with a dataset of 50,000 movie reviews
from the Internet Movie Database (IMDDb) and build a predictor that can distinguish
between positive and negative reviews.

The topics that we will cover in the following sections include the following:

* Cleaning and preparing text data
e Building feature vectors from text documents

* Training a machine learning model to classify positive and negative
movie reviews

* Working with large text datasets using out-of-core learning
* Inferring topics from document collections for categorization

[255]

Applying Machine Learning to Sentiment Analysis

Preparing the IMDb movie review data for
text processing

Sentiment analysis, sometimes also called opinion mining, is a popular subdiscipline
of the broader field of NLP; it is concerned with analyzing the polarity of documents.
A popular task in sentiment analysis is the classification of documents based on the
expressed opinions or emotions of the authors with regard to a particular topic.

In this chapter, we will be working with a large dataset of movie reviews from

the IMDb that has been collected by Maas and others (Learning Word Vectors for
Sentiment Analysis, A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pages 142-150, Portland, Oregon, USA, Association for
Computational Linguistics, June 2011). The movie review dataset consists of 50,000
polar movie reviews that are labeled as either positive or negative; here, positive
means that a movie was rated with more than six stars on IMDDb, and negative
means that a movie was rated with fewer than five stars on IMDb. In the following
sections, we will download the dataset, preprocess it into a useable format for
machine learning tools, and extract meaningful information from a subset of these
movie reviews to build a machine learning model that can predict whether a certain
reviewer liked or disliked a movie.

Obtaining the movie review dataset

A compressed archive of the movie review dataset (84.1 MB) can be downloaded
from http://ai.stanford.edu/~amaas/data/sentiment/ as a Gzip-compressed
tarball archive:

* If you are working with Linux or macOS, you can open a hew Terminal
window, cd into the download directory, and execute tar -zxf aclImdb
v1.tar.gz to decompress the dataset.

e If you are working with Windows, you can download a free archiver such
as 7Zip (http://www.7-zip.org) to extract the files from the download
archive.

e Alternatively, you can directly unpack the Gzip-compressed tarball archive
directly in Python as follows:
>>> import tarfile
>>> with tarfile.open('aclImdb vl.tar.gz', 'r:gz') as tar:
tar.extractall ()

[256]

Chapter 8

Preprocessing the movie dataset into more
convenient format

Having successfully extracted the dataset, we will now assemble the individual

text documents from the decompressed download archive into a single CSV file. In
the following code section, we will be reading the movie reviews into a pandas
DataFrame Object, which can take up to 10 minutes on a standard desktop computer.
To visualize the progress and estimated time until completion, we will use the
Python Progress Indicator (PyPrind, https://pypi.python.org/pypi/PyPrind/)
package that | developed several years ago for such purposes. PyPrind can be
installed by executing the pip install pyprind command.

>>> import pyprind
>>> import pandas as pd
>>> import os

>>> # change the “basepath™ to the directory of the
>>> # unzipped movie dataset

>>> basepath = 'aclImdb'
>>>
>>> labels = {'pos': 1, 'neg': 0}
>>> pbar = pyprind.ProgBar (50000)
>>> df = pd.DataFrame ()
>>> for s in ('test', 'train'):
for 1 in ('pos', 'neg'):
path = os.path.join(basepath, s, 1)
for file in os.listdir (path):
with open(os.path.join(path, file),
'r', encoding='utf-8') as infile:
txt = infile.read()
df = df.append([[txt, labels[1]]11],
ignore index=True)
.. pbar.update ()
>>> df.columns = ['review', 'sentiment']
0% 100%
CHHH 4] | ETA: 00:00:00
Total time elapsed: 00:03:37

[257]

Applying Machine Learning to Sentiment Analysis

In the preceding code, we first initialized a new progress bar object pbar with
50,000 iterations, which is the number of documents we were going to read in.
Using the nested for loops, we iterated over the train and test subdirectories in
the main aclImdb directory and read the individual text files from the pos and neg
subdirectories that we eventually appended to the df pandas DataFrame, together
with an integer class label (1 = positive and o = negative).

Since the class labels in the assembled dataset are sorted, we will now shuffle
DataFrame USing the permutation function from the np . random submodule—this
will be useful to split the dataset into training and test sets in later sections when we
will stream the data from our local drive directly. For our own convenience, we will
also store the assembled and shuffled movie review dataset as a CSV file:

>>> import numpy as np

>>> np.random.seed (0)
>>> df = df.reindex(np.random.permutation (df.index))
>>> df.to _csv('movie data.csv',6 index=False, encoding='utf-8")

Since we are going to use this dataset later in this chapter, let's quickly confirm that
we have successfully saved the data in the right format by reading in the CSV and
printing an excerpt of the first three samples:

>>> df = pd.read csv('movie data.csv', encoding='utf-8')
>>> df .head(3)

If you are running the code examples in a Jupyter Notebook, you should now see the
first three samples of the dataset, as shown in the following table:

review sentiment

0 In 1974, the teenager Martha Moxley (Maggie Gr... 1
1 OK... so... | really like Kris Kristofferson a... 0
2 ***SPOILER™ Do not read this, if you think a... o

[258]

Chapter 8

Introducing the bag-of-words model

You may remember from Chapter 4, Building Good Training Sets — Data Preprocessing,
that we have to convert categorical data, such as text or words, into a numerical
form before we can pass it on to a machine learning algorithm. In this section, we
will introduce the bag-of-words, which allows us to represent text as numerical
feature vectors. The idea behind the bag-of-words model is quite simple and can be
summarized as follows:

1. We create a vocabulary of unique tokens—for example, words—from the
entire set of documents.

2. We construct a feature vector from each document that contains the counts of
how often each word occurs in the particular document.

Since the unique words in each document represent only a small subset of all the
words in the bag-of-words vocabulary, the feature vectors will mostly consist of
zeros, which is why we call them sparse. Do not worry if this sounds too abstract; in
the following subsections, we will walk through the process of creating a simple bag-
of-words model step-by-step.

Transforming words into feature vectors

To construct a bag-of-words model based on the word counts in the respective
documents, we can use the countvectorizer class implemented in scikit-learn. As
we will see in the following code section, countvectorizer takes an array of text
data, which can be documents or sentences, and constructs the bag-of-words model
for us:

>>> import numpy as np
>>> from sklearn.feature extraction.text import CountVectorizer
>>> count = CountVectorizer ()
>>> docs = np.array ([
'The sun is shining',
'The weather is sweet',
'The sun is shining and the weather is sweet'])
>>> bag = count.fit transform(docs)

[259]

Applying Machine Learning to Sentiment Analysis

By calling the fit transform method on Countvectorizer, we constructed
the vocabulary of the bag-of-words model and transformed the following three
sentences into sparse feature vectors:

¢ 'The sun is shining'

® 'The weather is sweet'

®* 'The sun is shining, the weather is sweet, and one and one is
two'

Now let's print the contents of the vocabulary to get a better understanding of the
underlying concepts:

>>> print (count.vocabulary)

{rand': o,
'two': 7,
'shining': 3,
'one': 2,
'sun': 4,

'weather': 8,

"the': 6,
'sweet': 5,
"is': 1}

As we can see from executing the preceding command, the vocabulary is stored in a
Python dictionary that maps the unique words to integer indices. Next, let's print the
feature vectors that we just created:

>>> print (bag.toarray())
[[01 011010 0]

[0 110 11

[2

Each index position in the feature vectors shown here corresponds to the integer
values that are stored as dictionary items in the countvectorizer vocabulary. For
example, the first feature at index position o resembles the count of the word 'and’,
which only occurs in the last document, and the word 'is', at index position 1 (the
second feature in the document vectors), occurs in all three sentences. These values
in the feature vectors are also called the raw term frequencies: tf(t,d)—the number
of times a term t occurs in a document d.

[260]

Chapter 8

The sequence of items in the bag-of-words model that we just created
is also called the 1-gram or unigram model—each item or token
in the vocabulary represents a single word. More generally, the
contiguous sequences of items in NLP—words, letters, or symbols—
are also called n-grams. The choice of the number n in the n-gram
model depends on the particular application; for example, a study by
Kanaris and others revealed that n-grams of size 3 and 4 yield good
performances in anti-spam filtering of email messages (Words versus
character n-grams for anti-spam filtering, loannis Kanaris, Konstantinos
. Kanaris, loannis Houvardas, and Efstathios Stamatatos, International
% Journal on Artificial Intelligence Tools, World Scientific Publishing

S Company, 16(06): 1047-1067, 2007). To summarize the concept of the
n-gram representation, the 1-gram and 2-gram representations of our
first document "the sun is shining" would be constructed as follows:

e l-gram:"the", "sun","is", "shining"

e 2-gram: "the sun", "sun is", "is shining"

The CountVectorizer class in scikit-learn allows us to use different
n-gram models via its ngram_range parameter. While a 1-gram
representation is used by default, we could switch to a 2-gram
representation by initializing a new CountvVectorizer instance with
ngram_range=(2,2).

Assessing word relevancy via term
frequency-inverse document frequency

When we are analyzing text data, we often encounter words that occur across
multiple documents from both classes. These frequently occurring words typically
don't contain useful or discriminatory information. In this subsection, we will learn
about a useful technique called term frequency-inverse document frequency
(tf-idf) that can be used to downweight these frequently occurring words in the
feature vectors. The tf-idf can be defined as the product of the term frequency and
the inverse document frequency:

tfidf (t,d) = of (1,d) xidf (t.d)

Here the tf(t, d) is the term frequency that we introduced in the previous section, and
idf(t, d) is the inverse document frequency and can be calculated as follows:

n,

idf (t,d) = lOgm

[261]

Applying Machine Learning to Sentiment Analysis

Here n, is the total number of documents, and df(d, t) is the number of documents
d that contain the term t. Note that adding the constant 1 to the denominator is
optional and serves the purpose of assigning a non-zero value to terms that occur in
all training samples; the log is used to ensure that low document frequencies are not
given too much weight.

The scikit-learn library implements yet another transformer, the TfidfTransformer
class, that takes the raw term frequencies from the countvectorizer class as input
and transforms them into tf-idfs:

>>> from sklearn.feature extraction.text import TfidfTransformer
>>> tfidf = TfidfTransformer (use idf=True,
norm="'12",
smooth idf=True)
>>> np.set_printoptions (precision=2)
>>> print (tfidf.fit_ transform(count.fit_ transform(docs))
.toarray())
0.43 0. 0.56 0.56 0. 0.43 O. 0. 1
0.43 0. 0. 0. 0.56 0.43 0. 0.56]
.5 0.45 0.5 0.19 0.19 0.19 0.3 0.25 0.19]]

[l
[
[

o O O

As we saw in the previous subsection, the word 'is' had the largest term frequency
in the third document, being the most frequently occurring word. However, after
transforming the same feature vector into tf-idfs, we see that the word 'is' is now
associated with a relatively small tf-idf (0.45) in the third document, since it is also
present in the first and second document and thus is unlikely to contain any useful
discriminatory information.

However, if we'd manually calculated the tf-idfs of the individual terms in our
feature vectors, we'd notice that TfidfTransformer calculates the tf-idfs slightly
differently compared to the standard textbook equations that we defined previously.
The equations for the inverse document frequency implemented in scikit-learn is
computed as follows:

l+n,

idf (t,d) = lOgm

Similarly, the tf-idf computed in scikit-learn deviates slightly from the default
equation we defined earlier:

tf-idf (t,d) =/ (td)x (idf (t.d)+1)

[262]

Chapter 8

While it is also more typical to normalize the raw term frequencies before calculating
the tf-idfs, TfidfTransformer class normalizes the tf-idfs directly. By default
(norm='12"), scikit-learn's TfidfTransformer applies the L2-normalization,

which returns a vector of length 1 by dividing an un-normalized feature

vector v by its L2-norm:

v v 1%

v

norm=||v|| =\/ 5 > .)2
2 v,V ety (Z v)

i=l i

To make sure that we understand how TfidfTransformer works, let's walk through
an example and calculate the tf-idf of the word 'is' in the third document.

The word 'is' has a term frequency of 3 (¢/=3) in the third document, and the
document frequency of this term is 3 since the term 'is' occurs in all three
documents (df=3). Thus, we can calculate the inverse document frequency as follows:

1+3
idf ("is",d3)=1log——=0
lf(®) Og1+3

Now, in order to calculate the tf-idf, we simply need to add 1 to the inverse
document frequency and multiply it by the term frequency:

tFidf ("is", d3) =3x(0+1) =3

If we repeated this calculation for all terms in the third document, we'd obtain the
following tf-idf vectors: [3.39, 3.0, 3.39, 1.29, 1.29, 1.29, 2.0, 1.69, 1.29]. However,
notice that the values in this feature vector are different from the values that we
obtained from TfidfTransformer that we used previously. The final step that we
are missing in this tf-idf calculation is the L2-normalization, which can be applied
as follows:

[3.39, 3.0, 3.39,1.29,1.29,1.29, 2.0, 1.69, 1.29]

tf-idf (d3) =
J3.397 +3.0° +3.39° +1.29° +1.29* +1.29° +2.0° +1.69° +1.29°

norm

=[0.5, 0.45, 0.5, 0.19, 0.19, 0.19, 0.3, 0.25, 0.19]

tf-idf ("is",d3) = 0.45

[263]

Applying Machine Learning to Sentiment Analysis

As we can see, the results now match the results returned by scikit-learn's
TfidfTransformer, and since we now understand how tf-idfs are calculated, let's
proceed to the next section and apply those concepts to the movie review dataset.

Cleaning text data

In the previous subsections, we learned about the bag-of-words model, term bag-
of-words model, term frequencies, and tf-idfs. However, the first important step —
before we build our bag-of-words model—is to clean the text data by stripping it of
all unwanted characters. To illustrate why this is important, let's display the last 50
characters from the first document in the reshuffled movie review dataset:

>>> df.loc [0, 'review'] [-50:]

'is seven.

Title (Brazil): Not Available'

As we can see here, the text contains HTML markup as well as punctuation and
other non-letter characters. While HTML markup does not contain much useful
semantics, punctuation marks can represent useful, additional information in certain
NLP contexts. However, for simplicity, we will now remove all punctuation marks
except for emoticon characters such as :) since those are certainly useful for sentiment
analysis. To accomplish this task, we will use Python's regular expression (regex)
library, re, as shown here:

>>> import re
>>> def preprocessor (text) :

text = re.sub('<[*>]1*>', '', text)
emoticons = re.findall (' (?::];|=) (?:-)2(?2:\)|\(|D|P)",
text)
text = (re.sub('[\W]+', ' ', text.lower()) +
' '.join(emoticons) .replace('-', ''))

return text

Via the first regex < [*>] *> in the preceding code section, we tried to remove all of
the HTML markup from the movie reviews. Although many programmers generally
advise against the use of regex to parse HTML, this regex should be sufficient to clean
this particular dataset. After we removed the HTML markup, we used a slightly
more complex regex to find emoticons, which we temporarily stored as emoticons.
Next, we removed all non-word characters from the text via the regex [\w] + and
converted the text into lowercase characters.

[264]

Chapter 8

In the context of this analysis, we assume that the capitalization
of a word—for example, whether it appears at the beginning of
a sentence—does not contain semantically relevant information.
% However, note that there are exceptions, for instance, we remove the
’ notation of proper names. But again, in the context of this analysis,
it is a simplifying assumption that the letter case does not contain

information that is relevant for sentiment analysis.

Eventually, we added the temporarily stored emoticons to the end of the processed
document string. Additionally, we removed the nose character (-) from the emoticons
for consistency.

Although regular expressions offer an efficient and convenient approach
to searching for characters in a string, they also come with a steep learning
_curve. Unfortunately, an in-depth discussion of regular expressions is
a beyond the scope of this book. However, you can find a great tutorial

L on the Google Developers portal at https://developers.google.
com/edu/python/regular-expressions or check out the official
documentation of Python's re module at https://docs.python.
org/3.6/library/re.html

Although the addition of the emoticon characters to the end of the cleaned document
strings may not look like the most elegant approach, we shall note that the order

of the words doesn't matter in our bag-of-words model if our vocabulary consists

of only one-word tokens. But before we talk more about the splitting of documents
into individual terms, words, or tokens, let's confirm that our preprocessor works
correctly:

>>> preprocessor (df.loc [0, 'review'] [-50:])

'is seven title brazil not available'

>>> preprocessor ("This :) is :(a test :-)!")
'this is a test :) :(:)'

Lastly, since we will make use of the cleaned text data over and over again during the
next sections, let us now apply our preprocessor function to all the movie reviews
in our DataFrame:

>>> df ['review'] = df['review'] .apply (preprocessor)

[265]

Applying Machine Learning to Sentiment Analysis

Processing documents into tokens

After successfully preparing the movie review dataset, we now need to think

about how to split the text corpora into individual elements. One way to tokenize
documents is to split them into individual words by splitting the cleaned documents
at its whitespace characters:

>>> def tokenizer (text) :

return text.split()
>>> tokenizer ('runners like running and thus they run')
['"runners', 'like', 'running', 'and',6 'thus', 'they', 'run']

In the context of tokenization, another useful technique is word stemming, which

is the process of transforming a word into its root form. It allows us to map related
words to the same stem. The original stemming algorithm was developed by Martin
F. Porter in 1979 and is hence known as the Porter stemmer algorithm (An algorithm
for suffix stripping, Martin F. Porter, Program: Electronic Library and Information Systems,
14(3): 130-137, 1980). The Natural Language Toolkit (NLTK, http://www.nltk.
org) for Python implements the Porter stemming algorithm, which we will use in the
following code section. In order to install the NLTK, you can simply execute conda
install nltk Or pip install nltk.

. Although the NLTK is not the focus of the chapter, | highly recommend

that you visit the NLTK website as well as read the official NLTK book,

s which is freely available at http://www.nltk.org/book/, if you are
interested in more advanced applications in NLP.

The following code shows how to use the Porter stemming algorithm:

>>> from nltk.stem.porter import PorterStemmer
>>> porter = PorterStemmer ()
>>> def tokenizer porter(text):
return [porter.stem(word) for word in text.split()]
>>> tokenizer porter ('runners like running and thus they run')
['runner', 'like', 'run', 'and', 'thu', 'they', 'run']

Using the porterstemmer from the nltk package, we modified our tokenizer
function to reduce words to their root form, which was illustrated by the simple
preceding example where the word ' running' was stemmed to its root form 'run'.

[266]

Chapter 8

The Porter stemming algorithm is probably the oldest and simplest
stemming algorithm. Other popular stemming algorithms include the
newer Snowball stemmer (Porter2 or English stemmer) and the Lancaster
stemmer (Paice/Husk stemmer), which is faster but also more aggressive
than the Porter stemmer. These alternative stemming algorithms are also
available through the NLTK package (http://www.nltk.org/api/
nltk.stem.html).

% While stemming can create non-real words, such as 'thu' (from
S 'thus '), as shown in the previous example, a technique called

lemmatization aims to obtain the canonical (grammatically correct) forms
of individual words—the so-called lemmas. However, lemmatization
is computationally more difficult and expensive compared to stemming
and, in practice, it has been observed that stemming and lemmatization
have little impact on the performance of text classification (Influence of
Word Normalization on Text Classification, Michal Toman, Roman Tesar, and
Karel Jezek, Proceedings of InSciT, pages 354-358, 2006).

Before we jump into the next section, where we will train a machine learning model
using the bag-of-words model, let's briefly talk about another useful topic called
stop-word removal. Stop-words are simply those words that are extremely common
in all sorts of texts and probably bear no (or only little) useful information that can
be used to distinguish between different classes of documents. Examples of stop-
words are is, and, has, and like. Removing stop-words can be useful if we are working
with raw or normalized term frequencies rather than tf-idfs, which are already
downweighting frequently occurring words.

In order to remove stop-words from the movie reviews, we will use the set of 127
English stop-words that is available from the NLTK library, which can be obtained
by calling the n1tk.download function:

>>> import nltk

>>> nltk.download ('stopwords')

After we download the stop-words set, we can load and apply the English stop-word
set as follows:

>>> from nltk.corpus import stopwords
>>> stop = stopwords.words ('english')
>>> [w for w in tokenizer porter('a runner likes running and runs a

lot') [-10:] if w not in stop]

['runner', 'like', 'run', 'run', 'lot']

[267]

Applying Machine Learning to Sentiment Analysis

Training a logistic regression model for
document classification

In this section, we will train a logistic regression model to classify the movie reviews
into positive and negative reviews. First, we will divide the DataFrame of cleaned text
documents into 25,000 documents for training and 25,000 documents for testing:

>>> X train = df.loc[:25000, 'review'].values
>>> y train = df.loc[:25000, 'sentiment'].values
>>> X test = df.loc[25000:, 'review'].values
>>> y test = df.loc[25000:, 'sentiment'].values

Next, we will use a Gridsearchcv object to find the optimal set of parameters for our
logistic regression model using 5-fold stratified cross-validation:

>>> from sklearn.model selection import GridSearchCVv

>>> from sklearn.pipeline import Pipeline

>>> from sklearn.linear model import LogisticRegression

>>> from sklearn.feature extraction.text import TfidfVectorizer

>>> tfidf = TfidfVectorizer(strip_ accents=None,
lowercase=False,
preprocessor=None)

>>> param grid = [{'vect ngram range': [(1,1)],
'vect stop words': [stop, None]l,
'vect tokenizer': [tokenizer,

tokenizer porter],

'clf penalty': ['11', '12'],
'clf C': [1.0, 10.0, 100.01},

{'vect ngram range': [(1,1)],
'vect stop words': [stop, None]l,
'vect tokenizer': [tokenizer,

tokenizer porter],

'vect use idf': [Falsel],

'vect_ norm': [None],

'clf penalty': ['11', '1l2'],

'clf C': [1.0, 10.0, 100.0]}
R 1
>>> 1lr tfidf = Pipeline([('vect', tfidf),

('clf',

c. LogisticRegression (random state=0))])
>>> gs lr tfidf = GridSearchCv(lr tfidf, param grid,

[268]

Chapter 8

scoring='accuracy',
cv=5, verbose=1,
R n_jobs=1)
>>> gs lr tfidf.fit (X train, y train)

Please note that it is highly recommended to setn_jobs=-1
(instead of n_jobs=1) in the previous code example to utilize
all available cores on your machine and speed up the grid

N search. However, some Windows users reported issues when

y running the previous code with the n_jobs=-1 setting related

<:Zl to pickling the tokenizer and tokenizer porter functions
for multiprocessing on Windows. Another workaround would
be to replace those two functions, [tokenizer, tokenizer
porter], with [str.split].However, note that the replacement
by the simple str.split would not support stemming.

When we initialized the cridsearchcv object and its parameter grid using

the preceding code, we restricted ourselves to a limited number of parameter
combinations, since the number of feature vectors, as well as the large vocabulary,
can make the grid search computationally quite expensive. Using a standard desktop
computer, our grid search may take up to 40 minutes to complete.

In the previous code example, we replaced countvectorizer and
TfidfTransformer from the previous subsection with Tfidfvectorizer, which
combines the latter transformer objects. Our param_grid consisted of two parameter
dictionaries. In the first dictionary, we used the TfidfVvectorizer with its default
settings (use_idf=True, smooth idf=True, and norm='12") to calculate the tf-
idfs; in the second dictionary, we set those parameters to use_idf=False, smooth
idf=False, and norm=None in order to train a model based on raw term frequencies.
Furthermore, for the logistic regression classifier itself, we trained models using

L2 and L1 regularization via the penalty parameter and compared different
regularization strengths by defining a range of values for the inverse-regularization
parameter C.

After the grid search has finished, we can print the best parameter set:

)

>>> print ('Best parameter set: %s ' % gs lr tfidf.best params)
Best parameter set: {'clf C': 10.0, 'vect_ stop words': None,
'clf penalty': 'l2', 'vect tokenizer': <function tokenizer at
0x7f6c704948c8>, 'vect ngram range': (1, 1)}

[269]

Applying Machine Learning to Sentiment Analysis

As we can see in the preceding output, we obtained the best grid search results using
the regular tokenizer without Porter stemming, no stop-word library, and tf-idfs in
combination with a logistic regression classifier that uses L2-regularization with the
regularization strength C of 10. 0.

Using the best model from this grid search, let's print the average 5-fold cross-
validation accuracy scores on the training set and the classification accuracy on the
test dataset:

>>> print ('CV Accuracy: %.3f'

C. % gs_lr tfidf.best score)
CV Accuracy: 0.892

>>> clf = gs 1lr tfidf.best estimator
>>> print ('Test Accuracy: %.3f'

.. % clf.score(X test, y test))
Test Accuracy: 0.899

The results reveal that our machine learning model can predict whether a movie
review is positive or negative with 90 percent accuracy.

A still very popular classifier for text classification is the Naive Bayes
classifier, which gained popularity in applications of email spam filtering.
Naive Bayes classifiers are easy to implement, computationally efficient,
. and tend to perform particularly well on relatively small datasets
& compared to other algorithms. Although we don't discuss Naive Bayes
L classifiers in this book, the interested reader can find my article about

Naive text classification that I made freely available on arXiv (Naive Bayes
and Text Classification I - Introduction and Theory, S. Raschka, Computing
Research Repository (CoRR), abs/1410.5329, 2014, http://arxiv.org/
pdf/1410.5329v3.pdf).

Working with bigger data — online
algorithms and out-of-core learning

If you executed the code examples in the previous section, you may have noticed
that it could be computationally quite expensive to construct the feature vectors for
the 50,000 movie review dataset during grid search. In many real-world applications,
it is not uncommon to work with even larger datasets that can exceed our computer's
memory. Since not everyone has access to supercomputer facilities, we will now
apply a technique called out-of-core learning, which allows us to work with such
large datasets by fitting the classifier incrementally on smaller batches of the dataset.

[270]

Chapter 8

Back in Chapter 2, Training Simple Machine Learning Algorithms for Classification, we
introduced the concept of stochastic gradient descent, which is an optimization
algorithm that updates the model's weights using one sample at a time. In this
section, we will make use of the partial fit function of the sGbclassifier in
scikit-learn to stream the documents directly from our local drive, and train a logistic
regression model using small mini-batches of documents.

First, we define a tokenizer function that cleans the unprocessed text data from
the movie_data.csv file that we constructed at the beginning of this chapter and

separate it into word tokens while removing stop words:

>>> import numpy as np
>>> import re
>>> from nltk.corpus import stopwords

>>> stop = stopwords.words('english')
>>> def tokenizer (text) :
text = re.sub('<[">]*>', '', text)
emoticons = re.findall (' (?::];|=)(?:-)2(?2:\) |\ (|D|P)",
text.lower())
text = re.sub (' [\W]+', ' ', text.lower()) \
+ ' '.join(emoticons) .replace('-', '')
tokenized = [w for w in text.split() if w not in stop]

return tokenized

Next, we define a generator function stream_docs that reads in and returns one
document at a time:

>>> def stream docs(path) :

with open(path, 'r', encoding='utf-8') as csv:
next (csv) # skip header
for line in csv:
text, label = line[:-3], int(linel[-2])
yield text, label

To verify that our stream_docs function works correctly, let's read in the first
document from the movie data.csv file, which should return a tuple consisting of
the review text as well as the corresponding class label:

>>> next (stream docs (path='movie data.csv'))
('""In 1974, the teenager Martha Moxley ... ', 1)

[271]

Applying Machine Learning to Sentiment Analysis

We will now define a function, get_minibatch, that will take a document stream
from the stream docs function and return a particular number of documents
specified by the size parameter:

>>> def get minibatch(doc stream, size):
docs, y = [1, II
try:
for in range(size):
text, label = next (doc_stream)
docs.append (text)
y.append (label)
except StopIlteration:
return None, None
return docs, vy

Unfortunately, we can't use countvectorizer for out-of-core learning since it
requires holding the complete vocabulary in memory. Also, Tfidfvectorizer
needs to keep all the feature vectors of the training dataset in memory to calculate
the inverse document frequencies. However, another useful vectorizer for text
processing implemented in scikit-learn is HashingVectorizer. HashingVectorizer
is data-independent and makes use of the hashing trick via the 32-bit MurmurHash3
function by Austin Appleby (https://sites.google.com/site/murmurhash/):

>>> from sklearn.feature extraction.text import HashingVectorizer
>>> from sklearn.linear model import SGDClassifier
>>> vect = HashingVectorizer (decode error='ignore',
n_ features=2**21,
preprocessor=None,
tokenizer=tokenizer)
>>> clf = SGDClassifier(loss='log', random state=1l, n iter=1)
>>> doc_stream = stream docs (path='movie data.csv')

You can replace perceptron(..., n_iter=1, ...) by
Perceptron(..., max_iter=1, ...) inscikit-learn
—"Versions greater than 0.18. The n_iter parameter is used here

deliberately, because scikit-learn 0.18 is still widely used.

[272]

Chapter 8

Using the preceding code, we initialized Hashingvectorizer with our tokenizer
function and set the number of features to 2**21. Furthermore, we reinitialized a
logistic regression classifier by setting the 1oss parameter of the sGbclassifier to
'log'—note that by choosing a large number of features in the Hashingvectorizer,
we reduce the chance of causing hash collisions, but we also increase the number of
coefficients in our logistic regression model. Now comes the really interesting part.
Having set up all the complementary functions, we can now start the out-of-core
learning using the following code:

>>> import pyprind
>>> pbar = pyprind.ProgBar (45)
>>> classes = np.array ([0, 17)
>>> for _ in range (45):
X_train, y train = get_minibatch(doc_stream, size=1000)
if not X train:
break
X train = vect.transform(X train)
clf.partial fit (X train, y train, classes=classes)
C pbar.update ()
0% 100%
CHH] | ETA: 00:00:00
Total time elapsed: 00:00:39

Again, we made use of the PyPrind package in order to estimate the progress

of our learning algorithm. We initialized the progress bar object with 45 iterations
and, in the following for loop, we iterated over 45 mini-batches of documents where
each mini-batch consists of 1,000 documents. Having completed the incremental
learning process, we will use the last 5,000 documents to evaluate the performance of
our model:

>>> X test, y test = get_minibatch(doc_stream, size=5000)
>>> X test = vect.transform(X test)

>>> print ('Accuracy: %.3f' % clf.score(X test, y test))
Accuracy: 0.878

As we can see, the accuracy of the model is approximately 88 percent, slightly below
the accuracy that we achieved in the previous section using the grid search for
hyperparameter tuning. However, out-of-core learning is very memory efficient and
took less than a minute to complete. Finally, we can use the last 5,000 documents to
update our model:

>>> clf = clf.partial fit(X test, y test)

[273]

Applying Machine Learning to Sentiment Analysis

If you are planning to continue directly with Chapter 9, Embedding a Machine Learning
Model into a Web Application, | recommend you keep the current Python session open.
In the next chapter, we will use the model that we just trained to learn how to save it
to disk for later use and embed it into a web application.

A more modern alternative to the bag-of-words model is word2vec,
an algorithm that Google released in 2013 (Efficient Estimation of Word
Representations in Vector Space, T. Mikolov, K. Chen, G. Corrado, and J. Dean,
arXiv preprint arXiv:1301.3781, 2013). The word2vec algorithm is an
unsupervised learning algorithm based on neural networks that attempts
to automatically learn the relationship between words. The idea behind
L word2vec is to put words that have similar meanings into similar clusters,
and via clever vector-spacing, the model can reproduce certain words
using simple vector math, for example, king - man + woman = queen.

The original C-implementation with useful links to the relevant papers
and alternative implementations can be found at https://code.
google.com/p/word2vec/.

Topic modeling with Latent Dirichlet
Allocation

Topic modeling describes the broad task of assigning topics to unlabelled text
documents. For example, a typical application would be the categorization of
documents in a large text corpus of newspaper articles where we don't know on
which specific page or category they appear in. In applications of topic modeling,
we then aim to assign category labels to those articles —for example, sports, finance,
world news, politics, local news, and so forth. Thus, in the context of the broad
categories of machine learning that we discussed in Chapter 1, Giving Computers the
Ability to Learn from Data, we can consider topic modeling as a clustering task, a
subcategory of unsupervised learning.

In this section, we will introduce a popular technique for topic modeling called
Latent Dirichlet Allocation (LDA). However, note that while Latent Dirichlet
Allocation is often abbreviated as LDA, it is not to be confused with Linear
discriminant analysis, a supervised dimensionality reduction technique that we
introduced in Chapter 5, Compressing Data via Dimensionality Reduction.

[274]

Chapter 8

LDA is different from the supervised learning approach that we took
. inthis chapter to classify movie reviews as positive and negative.
Thus, if you are interested in embedding scikit-learn models into a web
i application via the Flask framework using the movie reviewer as an
example, please feel free to jump to the next chapter and revisit this
standalone section on topic modeling later on.

Decomposing text documents with LDA

Since the mathematics behind LDA is quite involved and requires knowledge
about Bayesian inference, we will approach this topic from a practitioner's
perspective and interpret LDA using layman's terms. However, the interested
reader can read more about LDA in the following research paper: Latent Dirichlet
Allocation, David M. Blei, Andrew Y. Ng, and Michael I. Jordan, Journal of Machine
Learning Research 3, pages: 993-1022, Jan 2003.

LDA is a generative probabilistic model that tries to find groups of words that appear
frequently together across different documents. These frequently appearing words
represent our topics, assuming that each document is a mixture of different words.
The input to an LDA is the bag-of-words model we discussed earlier in this chapter.
Given a bag-of-words matrix as input, LDA decomposes it into two new matrices:

* A document to topic matrix
* A word to topic matrix

LDA decomposes the bag-of-words matrix in such a way that if we multiply those
two matrices together, we would be able to reproduce the input, the bag-of-words
matrix, with the lowest possible error. In practice, we are interested in those topics
that LDA found in the bag-of-words matrix. The only downside may be that we must
define the number of topics beforehand — the number of topics is a hyperparameter
of LDA that has to be specified manually.

LDA with scikit-learn

In this subsection, we will use the LatentDirichletAllocation class implemented
in scikit-learn to decompose the movie review dataset and categorize it into different
topics. In the following example, we restrict the analysis to 10 different topics, but
readers are encouraged to experiment with the hyperparameters of the algorithm to
explore the topics that can be found in this dataset further.

[275]

Applying Machine Learning to Sentiment Analysis

First, we are going to load the dataset into a pandas bataFrame using the local
movie_data.csv file of the movie reviews that we have created at the beginning of
this chapter:

>>> import pandas as pd
>>> df = pd.read csv('movie data.csv', encoding='utf-8')

Next, we are going to use the already familiar Countvectorizer to create the
bag-of-words matrix as input to the LDA. For convenience, we will use scikit-learn's
built-in English stop word library via stop _words='english':

>>> from sklearn.feature extraction.text import CountVectorizer
>>> count = CountVectorizer (stop words='english',

max_df=.1,

max_features=5000)
>>> X = count.fit transform(df['review'].values)

Notice that we set the maximum document frequency of words to be considered

to 10 percent (max_df=.1) to exclude words that occur too frequently across
documents. The rationale behind the removal of frequently occurring words is that
these might be common words appearing across all documents and are therefore
less likely associated with a specific topic category of a given document. Also, we
limited the number of words to be considered to the most frequently occurring 5,000
words (max_features=5000), to limit the dimensionality of this dataset so that it
improves the inference performed by LDA. However, both max df=.1 and max_
features=5000 are hyperparameter values that | chose arbitrarily, and readers are
encouraged to tune them while comparing the results.

The following code example demonstrates how to fita LatentDirichletAllocation
estimator to the bag-of-words matrix and infer the 10 different topics from the
documents (note that the model fitting can take up to five minutes or more on a
laptop or standard desktop computer):

>>> from sklearn.decomposition import LatentDirichletAllocation
>>> lda = LatentDirichletAllocation(n_topics=10,

random_ state=123,

learning method='batch')
>>> X topics = lda.fit_ transform(X)

By setting learning method='batch', we let the 1da estimator do its estimation
based on all available training data (the bag-of-words matrix) in one iteration,
which is slower than the alternative 'online' learning method but can lead to more
accurate results (setting learning method='online' is analogous to online or
mini-batch learning that we discussed in Chapter 2, Training Simple Machine Learning
Algorithms for Classification, and in this chapter).

[276]

Chapter 8

The scikit-learn library's implementation of LDA uses the Expectation-
Maximization (EM) algorithm to update its parameter estimates
iteratively. We haven't discussed the EM algorithm in this chapter, but
» if you are curious to learn more, please see the excellent overview on
% Wikipedia (https://en.wikipedia.org/wiki/Expectation-
g maximization algorithm)and the detailed tutorial on how it is used
in LDA in Colorado Reed's tutorial, Latent Dirichlet Allocation: Towards a
Deeper Understanding, which is freely available at http: //obphio.us/
pdfs/lda_tutorial.pdf.

After fitting the LDA, we now have access to the components_ attribute of the 1da
instance, which stores a matrix containing the word importance (here, 5000) for each
of the 10 topics in increasing order:

>>> lda.components_.shape
(10, 5000)

To analyze the results, let's print the five most important words for each of the 10
topics. Note that the word importance values are ranked in increasing order. Thus, to
print the top five words, we need to sort the topic array in reverse order:

>>> n_top_words = 5
>>> feature names = count.get_ feature_names ()
>>> for topic_idx, topic in enumerate(lda.components):
print ("Topic %d:" % (topic idx + 1))
print (" ".join([feature names[i]
for 1 in topic.argsort ()\

[:-n top words - 1:-111]))

Topic 1:

worst minutes awful script stupid
Topic 2:

family mother father children girl
Topic 3:

american war dvd music tv

Topic 4:

human audience cinema art sense
Topic 5:

police guy car dead murder

Topic 6:

horror house sex girl woman

Topic 7:

role performance comedy actor performances
Topic 8:

series episode war episodes tv

[277]

Applying Machine Learning to Sentiment Analysis

Topic 9:

book version original read novel
Topic 10:

action fight guy guys cool

Based on reading the five most important words for each topic, we may guess that
the LDA identified the following topics:

Generally bad movies (not really a topic category)
Movies about families

War movies

Art movies

Crime movies

Horror movies

Comedy movies

Movies somehow related to TV shows

© o N o g~ wDdhRE

Movies based on books
10. Action movies

To confirm that the categories make sense based on the reviews, let's plot three
movies from the horror movie category (horror movies belong to category 6 at
index position s5):

>>> horror = X topics[:, 5].argsort() [::-1]
>>> for iter idx, movie idx in enumerate (horror[:3]):

print ('\nHorror movie #%d:' % (iter idx + 1))

print (df ['review'] [movie idx] [:300], '...")
Horror movie #1:
House of Dracula works from the same basic premise as House of
Frankenstein from the year before; namely that Universal's three most
famous monsters; Dracula, Frankenstein's Monster and The Wolf Man are
appearing in the movie together. Naturally, the film is rather messy
therefore, but the fact that

Horror movie #2:

Okay, what the hell kind of TRASH have I been watching now? "The
Witches' Mountain" has got to be one of the most incoherent and insane
Spanish exploitation flicks ever and yet, at the same time, it's also
strangely compelling. There's absolutely nothing that makes sense here
and I even doubt there

Horror movie #3:

[278]

Chapter 8

Horror movie time, Japanese style. Uzumaki/Spiral was a
total freakfest from start to finish. A fun freakfest at that, but at
times it was a tad too reliant on kitsch rather than the horror. The
story is difficult to summarize succinctly: a carefree, normal teenage
girl starts coming fac ...

Using the preceding code example, we printed the first 300 characters from the top
three horror movies, and we can see that the reviews—even though we don't know
which exact movie they belong to—sound like reviews of horror movies (however,
one might argue that Horror movie #2 could also be a good fit for topic category 1:
Generally bad movies).

Summary

In this chapter, we learned how to use machine learning algorithms to classify text
documents based on their polarity, which is a basic task in sentiment analysis in
the field of NLP. Not only did we learn how to encode a document as a feature
vector using the bag-of-words model, but we also learned how to weight the term
frequency by relevance using tf-idf.

Working with text data can be computationally quite expensive due to the large
feature vectors that are created during this process; in the last section, we learned
how to utilize out-of-core or incremental learning to train a machine learning
algorithm without loading the whole dataset into a computer's memory.

Lastly, we introduced the concept of topic modeling using LDA to categorize the
movie reviews into different categories in unsupervised fashion.

In the next chapter, we will use our document classifier and learn how to embed it
into a web application.

[279]

Embedding a Machine
Learning Model into a
Web Application

In the previous chapters, you learned about the many different machine learning
concepts and algorithms that can help us with better and more efficient decision-
making. However, machine learning techniques are not limited to offline
applications and analysis, and they can be the predictive engine of your web
services. For example, popular and useful applications of machine learning models
in web applications include spam detection in submission forms, search engines,
recommendation systems for media or shopping portals, and many more.

In this chapter, you will learn how to embed a machine learning model into a web
application that can not only classify, but also learn from data in real time. The topics
that we will cover are as follows:

e Saving the current state of a trained machine learning model

e Using SQL.ite databases for data storage

* Developing a web application using the popular Flask web framework

* Deploying a machine learning application to a public web server

[281]

Embedding a Machine Learning Model into a Web Application

Serializing fitted scikit-learn estimators

Training a machine learning model can be computationally quite expensive, as we
have seen in Chapter 8, Applying Machine Learning to Sentiment Analysis. Surely we
don't want to train our model every time we close our Python interpreter and want
to make a new prediction or reload our web application? One option for model
persistence is Python's in-built pickle module (https://docs.python.org/3.6/
library/pickle.html), which allows us to serialize and deserialize Python object
structures to compact bytecode so that we can save our classifier in its current state
and reload it if we want to classify new samples, without needing the model to learn
from the training data all over again. Before you execute the following code, please
make sure that you have trained the out-of-core logistic regression model from the
last section of Chapter 8, Applying Machine Learning to Sentiment Analysis and have it
ready in your current Python session:

>>> import pickle
>>> import os
>>> dest = os.path.join('movieclassifier', 'pkl objects!')
>>> if not os.path.exists(dest):
os.makedirs (dest)

>>> pickle.dump (stop,
open (os.path.join(dest, 'stopwords.pkl'),'wb'),
... protocol=4)
>>> pickle.dump (clf,
open (os.path.join(dest, 'classifier.pkl'), 'wb'),
protocol=4)

Using the preceding code, we created a movieclassifier directory where we will
later store the files and data for our web application. Within this movieclassifier
directory, we created apkl objects subdirectory to save the serialized Python
objects to our local drive. Via the dump method of the pickle module, we then
serialized the trained logistic regression model as well as the stop word set from the
Natural Language Toolkit (NLTK) library, so that we don't have to install the NLTK
vocabulary on our server.

The dump method takes as its first argument the object that we want to pickle,

and for the second argument we provided an open file object that the Python object
will be written to. Via the wb argument inside the open function, we opened the file
in binary mode for pickle, and we set protocol=4 to choose the latest and most
efficient pickle protocol that has been added to Python 3.4, which is compatible with
Python 3.4 or newer. If you have problems using protocol=4, please check whether
you are using the latest Python 3 version. Alternatively, you may consider choosing
a lower protocol number.

[282]

Chapter 9

Our logistic regression model contains several NumPy arrays, such as
. the weight vector, and a more efficient way to serialize NumPy arrays
% is to use the alternative joblib library. To ensure compatibility with
/S the server environment that we will use in later sections, we will use
the standard pickle approach. If you are interested, you can find more
information about joblib athttp://pythonhosted.org/joblib/

We don't need to pickle HashingVectorizer, since it does not need to be fitted.
Instead, we can create a new Python script file from which we can import the
vectorizer into our current Python session. Now, copy the following code and save it
as vectorizer.py in the movieclassifier directory:

from sklearn.feature extraction.text import HashingVectorizer
import re

import os

import pickle

cur dir = os.path.dirname(_file)

stop = pickle.load (open (
os.path.join(cur dir,
'pkl objects',
'stopwords.pkl'), 'rb'))

def tokenizer (text):

text = re.sub('<[*>]*>', '', text)
emoticons = re.findall (' (?::];|=)(?:-)2(?2:\)|\(|D|P)",
text.lower())
text = re.sub('[\W]+', ' ', text.lower()) \
+ ' '.join(emoticons) .replace('-', '')
tokenized = [w for w in text.split() if w not in stop]

return tokenized

vect = HashingVectorizer (decode error='ignore',
n_ features=2**21,
preprocessor=None,
tokenizer=tokenizer)

After we have pickled the Python objects and created the vectorizer.py file, it
would now be a good idea to restart our Python interpreter or IPython Notebook
kernel to test if we can deserialize the objects without error.

[283]

Embedding a Machine Learning Model into a Web Application

However, please note that unpickling data from an untrusted source
can be a potential security risk, since the pickle module is not secured
against malicious code. Since pickle was designed to serialize
» arbitrary objects, the unpickling process will execute code that has been
a stored in a pickle file. Thus, if you receive pickle files from an untrusted
g source (for example, by downloading them from the internet), please
proceed with extra care and unpickle the items in a virtual environment
and/or on a non-essential machine that does not store important data
that no one except you should have access to.

From your Terminal, navigate to the movieclassifier directory, start a new Python
session and execute the following code to verify that you can import the vectorizer
and unpickle the classifier:

>>> import pickle
>>> import re
>>> import os
>>> from vectorizer import vect
>>> clf = pickle.load (open (
os.path.join('pkl objects',
'classifier.pkl'), 'rb'))

After we have successfully loaded the vectorizer and unpickled the classifier, we
can now use these objects to preprocess document samples and make predictions
about their sentiment:

>>> import numpy as np
>>> label = {0:'negative', 1:'positive'}

>>> example = ['I love this movie']
>>> X = vect.transform(example)
>>> print ('Prediction: %s\nProbability: %.2f%%' %\
(label [clf.predict (X) [0]],
np.max (clf.predict proba (X)) *100))
Prediction: positive
Probability: 91.56%

[284]

Chapter 9

Since our classifier returns the class labels as integers, we defined a simple

Python dictionary to map these integers to their sentiment. We then used
HashingVectorizer to transform the simple example document into a word vector
x. Finally, we used the predict method of the logistic regression classifier to predict
the class label, as well as the predict_proba method to return the corresponding
probability of our prediction. Note that the predict proba method call returns an
array with a probability value for each unique class label. Since the class label with
the largest probability corresponds to the class label that is returned by the predict
call, we used the np .max function to return the probability of the predicted class.

Setting up an SQLIite database for data
storage

In this section, we will set up a simple SQLite database to collect optional feedback
about the predictions from users of the web application. We can use this feedback to
update our classification model. SQLite is an open source SQL database engine that
doesn't require a separate server to operate, which makes it ideal for smaller projects
and simple web applications. Essentially, a SQLite database can be understood as a
single, self-contained database file that allows us to directly access storage files.

Furthermore, SQLite doesn't require any system-specific configuration and is
supported by all common operating systems. It has gained a reputation for being
very reliable as it is used by popular companies such as Google, Mozilla, Adobe,
Apple, Microsoft, and many more. If you want to learn more about SQL.te, |
recommend you visit the official website at http://www.sglite.org.

Fortunately, following Python's batteries included philosophy, there is already an

API in the Python standard library, sqlite3, which allows us to work with SQL.ite
databases (for more information about sq1ite3, please visit https://docs.python.
org/3.6/library/sqglite3.html).

By executing the following code, we will create a new SQLite database inside the
movieclassifier directory and store two example movie reviews:

>>> import sglite3l3
>>> import os

>>> if os.path.exists('reviews.sqglite'):
os.remove ('reviews.sglite!')

>>> conn = sglite3.connect('reviews.sglite')

>>> C¢ = conn.cursor ()

>>> c.execute ('CREATE TABLE review db'\

[285]

Embedding a Machine Learning Model into a Web Application

' (review TEXT, sentiment INTEGER, date TEXT) ')

>>> examplel = 'I love this movie'
>>> c.execute ("INSERT INTO review db"\
" (review, sentiment, date) VALUES"\
" (?, ?, DATETIME('now'))", (examplel, 1))

>>> example2 = 'I disliked this movie'
>>> c.execute ("INSERT INTO review db"\

" (review, sentiment, date) VALUES"\

" (?, ?, DATETIME('now'))", (example2, 0))
>>> conn.commit ()

>>> conn.close ()

Following the preceding code example, we created a connection (conn) to a SQLite
database file by calling the connect method of the sqlite3 library, which created
the new database file reviews.sqglite in the movieclassifier directory if it didn't
already exist. Please note that SQL.ite doesn't implement a replace function for
existing tables; you need to delete the database file manually from your file browser
if you want to execute the code a second time.

Next, we created a cursor via the cursor method, which allows us to traverse over
the database records using the versatile SQL syntax. Via the first execute call, we
then created a new database table, review db. We used this to store and access
database entries. Along with review db, we also created three columns in this
database table: review, sentiment, and date. We used these to store two example
movie reviews and respective class labels (sentiments).

Using the DATETIME ('now') SQL command, we also added date and timestamps to
our entries. In addition to the timestamps, we used the question mark symbols (?) to
pass the movie review texts (examplel and example2) and the corresponding class
labels (1 and o) as positional arguments to the execute method, as members of a
tuple. Lastly, we called the commit method to save the changes that we made to the
database and closed the connection via the close method.

To check if the entries have been stored in the database table correctly, we will now
reopen the connection to the database and use the SQL seLEcT command to fetch all
rows in the database table that have been committed between the beginning of the
year 2017 and today:

>>> conn = sglite3.connect('reviews.sglite')
>>> C¢ = conn.cursor ()
>>> c.execute ("SELECT * FROM review db WHERE date"\
" BETWEEN '2017-01-01 00:00:00' AND DATETIME ('now')")

[286]

Chapter 9

>>> results = c.fetchall ()

>>> conn.close ()

>>> print (results)

[('T love this movie', 1, '2017-04-24 00:14:38"'"),
('I disliked this movie', 0, '2017-04-24 00:14:38")

Alternatively, we could also use the free Firefox browser plugin SQLite Manager
(available at https://addons.mozilla.org/en-US/firefox/addon/sqlite-
manager/), which offers a nice GUI interface for working with SQL.ite databases, as
shown in the following figure:

L]] SOLite Manager - fUsersisebastian/Desktop/ehiS reviews, sglite
7] ?’, ME£mw B o Directory B (Saees Prafils Dassbase) B
e B Stecture [ETNISEETTEIE Faccute S0 D8 Settings
F Master Tadin {1}
¥ Tables (1) TABLE review do Search Shew Al Add
T revien_db ' fewi Favign sontimant date
- 1 |1 ke i v [a |2e17-04-24 0010238
sartimart 2 |1 citniiked this movie |0 |2007-04.24 O6c14:38
datw 1
F o Wiews |0)
E o Indeces 10}
F Triggers [0}
S0ike 3170 GeckoB30 083 t-sigred. l-sgned Shamed Number of fles In selected divectony; 8 ET:1m3

Developing a web application with Flask

Having prepared the code for classifying movie reviews in the previous subsection,
let's discuss the basics of the Flask web framework to develop our web application.
After Armin Ronacher's initial release of Flask in 2010, the framework has gained
huge popularity over the years, and examples of popular applications that make use
of Flask include LinkedIn and Pinterest. Since Flask is written in Python, it provides
us Python programmers with a convenient interface for embedding existing Python
code, such as our movie classifier.

B Flask is also known as a microframework, which means that its 7

core is kept lean and simple but can be easily extended with other
, libraries. Although the learning curve of the lightweight Flask API is
not nearly as steep as those of other popular Python web frameworks,
such as Django, I encourage you to take a look at the official Flask
documentation at http://flask.pocoo.org/docs/0.12/ to
learn more about its functionality.

[287]

Embedding a Machine Learning Model into a Web Application

If the Flask library is not already installed in your current Python environment, you
can simply install it via conda or pip from your Terminal (at the time of writing, the
latest stable release was version 0.12.1):

conda install flask

or: pip install flask

Our first Flask web application

In this subsection, we will develop a very simple web application to become more
familiar with the Flask API before we implement our movie classifier. This first
application we are going to build consists of a simple web page with a form field that
lets us enter a name. After submitting the name to the web application, it will render
it on a new page. While this is a very simple example of a web application, it helps
with building intuition about how to store and pass variables and values between
the different parts of our code within the Flask framework.

First, we create a directory tree:

1st flask app 1/
app.py
templates/
first app.html

The app . py file will contain the main code that will be executed by the Python
interpreter to run the Flask web application. The templates directory is the directory
in which Flask will look for static HTML files for rendering in the web browser. Let's
now take a look at the contents of app . py:

from flask import Flask, render template

app = Flask(_name)
@app.route('/")
def index() :
return render template('first app.html')

if name_ == ' main_ ':
app.run()

[288]

Chapter 9

After looking at the previous code example, let's discuss the individual pieces step
by step:

1. We ran our application as a single module; thus we initialized a new Flask
instance with the argument __name _ to let Flask know that it can find the
HTML template folder (templates) in the same directory where it is located.

2. Next, we used the route decorator (eapp.route ('/')) to specify the URL
that should trigger the execution of the index function.

3. Here, our index function simply rendered the first app.html HTML file,
which is located in the templates folder.

4. Lastly, we used the run function to only run the application on the server
when this script is directly executed by the Python interpreter, which we
ensured using the if statement with name == ' main .

Now, let's take a look at the contents of the first app.html file:

<!doctype htmls>
<html>
<head>
<titles>First app</titles>
</head>
<body>
<div>Hi, this is my first Flask web app!</divs>
</body>
</html>

If you are not familiar with the HTML syntax yet, | recommend you visit

https://developer.mozilla.org/en-US/docs/Web/HTML for
e useful tutorials for learning the basics of HTML.

Here, we have simply filled an empty HTML template file with a <div> element
(a block level element) that contains this sentence: Hi, this is my first Flask
web app!.

Conveniently, Flask allows us to run our applications locally, which is useful for
developing and testing web applications before we deploy them on a public web
server. Now, let's start our web application by executing the command from the
Terminal inside the 1st_flask app 1 directory:

python3 app.py

[289]

Embedding a Machine Learning Model into a Web Application

We should see a line such as the following displayed in the Terminal:
* Running on http://127.0.0.1:5000/

This line contains the address of our local server. We can enter this address in

our web browser to see the web application in action. If everything has executed
correctly, we should see a simple website with the contentHi, this is my first
Flask web app! as shown in the following figure:

& @ < 127.0.0.1 . 0 » ;

Hi, this is my first Flask web app!

Form validation and rendering

In this subsection, we will extend our simple Flask web application with HTML
form elements to learn how to collect data from a user using the WTForms library
(https://wtforms.readthedocs.org/en/latest/), which can be installed via
conda Or pip:

conda install wtforms

or pip install wtforms

This web application will prompt a user to type in his or her name into a text field, as
shown in the following screenshot:

20 T e O A AL 127.0.0.1

What's your name?

Sebastian|

Say Hello

[290]

Chapter 9

After the submission button (Say Hello) has been clicked and the form is validated, a
new HTML page will be rendered to display the user's name:

e0e® M * Oy A TA LKL 127.0.0.1:5000/hello

Hello Sebastian

Setting up the directory structure
The new directory structure that we need to set up for this application looks like this:

1st flask app 2/

app.py

static/
style.css

templates/
_formhelpers.html
first _app.html
hello.html

The following are the contents of our modified app . py file:
from flask import Flask, render template, request
from wtforms import Form, TextAreaField, validators

app = Flask(_name)

class HelloForm(Form) :
sayhello = TextAreaField('', [validators.DataRequired()])

@app.route('/")
def index():
form = HelloForm(request.form)
return render template('first app.html', form=form)

@app.route ('/hello', methods=['POST'])

def hello():
form = HelloForm(request.form)
if request.method == 'POST' and form.validate() :

name = request.form['sayhello']

[291]

Embedding a Machine Learning Model into a Web Application

return render template('hello.html', name=name)
return render template('first app.html', form=form)
if name == ' main_ ':

app.run (debug=True)

Let's discuss what the previous code does step by step:

1.

Using wt forms, we extended the index function with a text field that we will
embed in our start page using the TextareaField class, which automatically
checks whether a user has provided valid input text or not.

Furthermore, we defined a new function, hello, which will render an HTML
page hello.html after validating the HTML form.

Here, we used the posT method to transport the form data to the server in the
message body. Finally, by setting the debug=True argument inside the app.
run method, we further activated Flask's debugger. This is a useful feature
for developing new web applications.

Implementing a macro using the Jinja2 templating
engine

Now, we will implement a generic macro in the formhelpers.html file via the
Jinja2 templating engine, which we will later import in our first app.html file to
render the text field:

{% macro render field(field) %}

<dt>{{ field.label }}
<dd>{{ field(*+*kwargs) |safe }}
{$ if field.errors %}
<ul class=errors>
{% for error in field.errors %}
{{ error }}</1li>
{% endfor %}

{% endif %}
</dd>
</dt>

{% endmacro %}

An in-depth discussion about the Jinja2 templating language is beyond the scope
of this book. However, you can find a comprehensive documentation of the Jinja2

syntax at http://jinja.pocoo.org

[292]

Chapter 9

Adding style via CSS

Next, we set up a simple Cascading Style Sheet (CSS) file, style.css, to
demonstrate how the look and feel of HTML documents can be modified. We have
to save the following CSS file, which will simply double the font size of our HTML
body elements, in a subdirectory called static, which is the default directory where
Flask looks for static files such as CSS. The file content is as follows:

body {
font-size: 2em;

}

The following are the contents of the modified first_app.html file that will now
render a text form where a user can enter a name:

<!doctype htmls>
<html>
<head>
<title>First app</titles>
<link rel="stylesheet" href="{{ url for('static',
filename='style.css') }}">
</head>
<body>
{$ from " formhelpers.html" import render field %}
<divs>What's your name?</divs>
<form method=post action="/hello">
<dl>
{{ render field(form.sayhello) }}
</dls>
<input type=submit value='Say Hello' name='submit btn'>
</form>
</body>
</html>

In the header section of first app.html, we loaded the CSS file. It should now
alter the size of all text elements in the HTML body. In the HTML body section, we
imported the form macro from formhelpers.html, and we rendered the sayhello
form that we specified in the app . py file. Furthermore, we added a button to the
same form element so that a user can submit the text field entry.

[293]

Embedding a Machine Learning Model into a Web Application

Creating the result page

Lastly, we will create a hello.html file that will be rendered via the render
template ('hello.html', name=name) line return inside the hello function, which
we defined in the app . py script to display the text that a user submitted via the text
field. The file content is as follows:

<!doctype htmls>
<html>
<head>
<titles>First app</titles>
<link rel="stylesheet" href="{{ url for('static',
filename='style.css') }}">
</head>
<body>
<divsHello {{ name }}</div>
</body>

</html>

Having set up our modified Flask web application, we can run it locally by executing
the following command from the application's main directory, and we can view the
result in our web browser at http://127.0.0.1:5000/:

python3 app.py

If you are new to web development, some of those concepts may seem
very complicated at first sight. In that case, I encourage you to simply
» set up the preceding files in a directory on your hard drive and examine
% them closely. You will see that the Flask web framework is relatively
straightforward and much simpler than it might initially appear! Also,
for more help, don't forget to consult the excellent Flask documentation
and examplesat http://flask.pocoo.org/docs/0.12/.

Turning the movie review classifier into a
web application

Now that we are somewhat familiar with the basics of Flask web development, let's
advance to the next step and implement our movie classifier into a web application.
In this section, we will develop a web application that will first prompt a user to
enter a movie review, as shown in the following screenshot:

[294]

Chapter 9

ao® < I i} ? A A (D) & raschias.pythonanywhere.com'

Please enter your movie review:

I love this moviel

Submit review

After the review has been submitted, the user will see a new page that shows the
predicted class label and the probability of the prediction. Furthermore, the user
will be able to provide feedback about this prediction by clicking on the Correct or
Incorrect button, as shown in the following screenshot:

L] L] 4 m a2} . A A E." raschkas. pythonanywhere.com/results

Your movie review:

I love this movie!

Prediction:

This movie review is positive (probability: 90.86%).

Correct Incorrect

Submit another review

[295]

Embedding a Machine Learning Model into a Web Application

If a user clicked on either the Correct or Incorrect button, our classification model
will be updated with respect to the user's feedback. Furthermore, we will also store
the movie review text provided by the user as well as the suggested class label,
which can be inferred from the button click, in a SQLite database for future reference.
(Alternatively, a user could skip the update step and click the Submit another
review button to submit another review.)

The third page that the user will see after clicking on one of the feedback buttons is a
simple thank you screen with a Submit another review button that redirects the user
back to the start page. This is shown in the following screenshot:

[] e < A A A @ raschkas, pylhonarmeahene com/thanks

Thank you for your feedback!

Submit another review

Before we take a closer look at the code implementation of this
web application, | encourage you to take a look at the live demo

that | uploaded at http://raschkas.pythonanywhere.com
' to get a better understanding of what we are trying to accomplish

in this section.

Files and folders — looking at the directory
tree

To start with the big picture, let's take a look at the directory tree that we are going to
create for this movie classification application, which is shown here:

[296]

Chapter 9

L app.py
¥ [pki_objects
classifierphl
* stopwaords.pkl
reviews.sqlite
¥ [} static
(% sryle.css
¥ | templates
@ _formhelpers.himl
& results_himl
o raviewlorm, htmil
& thanks.ntml
Ll veclorizer.py

In the previous section of this chapter, we already created the vectorizer.py file,

the SQLite database reviews.sglite, and the pkl objects subdirectory with the
pickled Python objects.

The app. py file in the main directory is the Python script that contains our Flask
code, and we will use the review.sqlite database file (which we created earlier
in this chapter) to store the movie reviews that are being submitted to our web
application. The templates subdirectory contains the HTML templates that will be
rendered by Flask and displayed in the browser, and the static subdirectory will
contain a simple CSS file to adjust the look of the rendered HTML code.

A separate directory containing the movie review classifier application
. with the code discussed in this section is provided with the code
% examples for this book, which you can either obtain directly from Packt
L or download from GitHub at https://github.com/rasbt/python-
machine-learning-book-2nd-edition/. The code in this section
can be found inthe. . . /code/ch09/movieclassifier subdirectory.

[297]

Embedding a Machine Learning Model into a Web Application

Implementing the main application as app.py

Since the app . py file is rather long, we will conquer it in two steps. The first section
of app . py imports the Python modules and objects that we are going to need, as well
as the code to unpickle and set up our classification model:

from flask import Flask, render template, request
from wtforms import Form, TextAreaField, validators
import pickle

import sqglite3

import os

import numpy as np

import HashingVectorizer from local dir
from vectorizer import vect

app = Flask(_name)

######## Preparing the Classifier

cur dir = os.path.dirname(file)

clf = pickle.load(open(os.path.join(cur dir,
'pkl_objects',
'classifier.pkl'), 'rb'))

db = os.path.join(cur dir, 'reviews.sqglite')

def classify(document) :
label = {0: 'negative', 1: 'positive'}
X = vect.transform([document])
y = clf.predict (X) [0]
proba = np.max(clf.predict proba (X))
return label[y], proba

def train(document, y):
X = vect.transform([document])
clf.partial fit (X, [yl)

def sqglite entry(path, document, y):
conn = sglite3.connect (path)
¢ = conn.cursor ()
c.execute ("INSERT INTO review db (review, sentiment, date)"\
" VALUES (?, ?, DATETIME('now'))", (document, vy))
conn.commit ()
conn.close()

[298]

Chapter 9

This first part of the app . py script should look very familiar to us by now. We simply
imported the HashingVectorizer and unpickled the logistic regression classifier.
Next, we defined a classify function to return the predicted class label as well

as the corresponding probability prediction of a given text document. The train
function can be used to update the classifier, given that a document and a class label
are provided.

Using the sqlite entry function, we can store a submitted movie review in our
SQL.ite database along with its class label and timestamp for our personal records.
Note that the c1f object will be reset to its original, pickled state if we restart the web
application. At the end of this chapter, you will learn how to use the data that we
collect in the SQLite database to update the classifier permanently.

The concepts in the second part of the app . py script should also look quite familiar
to us:

Hi#####H## Flask
class ReviewForm(Form) :
moviereview = TextAreaField('',
[validators.DataRequired() ,
validators.length (min=15)1])

@app.route('/")
def index():
form = ReviewForm(request.form)
return render template('reviewform.html', form=form)

@app.route ('/results', methods=['POST'])
def results():
form = ReviewForm(request.form)
if request.method == 'POST' and form.validate() :
review = request.form['moviereview']
y, proba = classify(review)
return render template('results.html',
content=review,
prediction=y,
probability=round (proba*100, 2))
return render template('reviewform.html', form=form)

@app.route ('/thanks', methods=['POST'])

def feedback() :
feedback = request.form['feedback button']
review = request.form['review']

[299]

Embedding a Machine Learning Model into a Web Application

prediction = request.form['prediction']

inv_label = {'negative': 0, 'positive': 1}
y = inv_label [prediction]
if feedback == 'Incorrect':
y = int (not (y))
train(review, y)
sglite entry(db, review, y)
return render template ('thanks.html')

if name == ' main ':
app.run (debug=True)

We defined a ReviewForm class that instantiates a TextaAreaField, which will

be rendered in the reviewform.html template file (the landing page of our web
application). This, in turn, is rendered by the index function. With the validators.
length(min=15) parameter, we require the user to enter a review that contains

at least 15 characters. Inside the results function, we fetch the contents of the
submitted web form and pass it on to our classifier to predict the sentiment of

the movie classifier, which will then be displayed in the rendered results.html
template.

The feedback function, which we implemented in app . py in the previous
subsection, may look a little bit complicated at first glance. It essentially fetches the
predicted class label from the results.html template if a user clicked on the Correct
or Incorrect feedback button, and transforms the predicted sentiment back into an
integer class label that will be used to update the classifier via the train function,
which we implemented in the first section of the app . py script. Also, a new entry

to the SQLite database will be made via the sqlite entry function if feedback was
provided, and eventually the thanks.html template will be rendered to thank the
user for the feedback.

Setting up the review form

Next, let's take a look at the reviewform.html template, which constitutes the
starting page of our application:

<!doctype htmls>
<html>
<heads>
<titles>Movie Classification</title>
<link rel="stylesheet"
href="{{ url for('static',6 filename='style.css') }}">
</head>

[300]

Chapter 9

<body>

<h2>Please enter your movie review:</h2>

o

{% from " formhelpers.html" import render field %}

<form method=post action="/results">

<dl>
{{ render field(form.moviereview, cols='30', rows='10") }}

</dl>

<divs>
<input type=submit value='Submit review'

name='submit btn's>
</div>
</form>

</body>
</html>

Here, we simply imported the same _formhelpers.html template that we defined
in the Form validation and rendering section earlier in this chapter. The render_field
function of this macro is used to render a TextAreaField wWhere a user can provide a
movie review and submit it via the Submit review button displayed at the bottom of
the page. This TextareaField is 30 columns wide and 10 rows tall, and would look

like this:

ao®m < 1270001 v 4] u ¥

Please enter your movie review:

Susmis review

[301]

Embedding a Machine Learning Model into a Web Application

Creating a results page template

Our next template, results.html, looks a little bit more interesting:

<!doctype htmls>
<html>
<head>
<titlesMovie Classification</title>
<link rel="stylesheet"
href="{{ url for('static', filename='style.css') }}">
</head>
<body>

<h3>Your movie review:</h3>
<div>{{ content }}</div>

<h3>Prediction:</h3>
<div>This movie review is {{ prediction }}
(probability: {{ probability }}%).</div>

<div id='button'>
<form action="/thanks" method="post">
<input type=submit value='Correct'
name="'feedback button'>
<input type=submit value='Incorrect'
name="'feedback button'>
<input type=hidden value='{{ prediction }}'
name='prediction'>
<input type=hidden value='{{ content }}' name='review'>
</form>
</div>

<div id='button'>
<form action="/">
<input type=submit value='Submit another review's>
</form>

</div>

</body>
</html>

[302]

Chapter 9

First, we inserted the submitted review, as well as the results of the prediction, in the
corresponding fields {{ content }}, {{ prediction }},and {{ probability }}.
You may notice that we used the {{ content }}and {{ prediction }} placeholder
variables a second time in the form that contains the Correct and Incorrect buttons.
This is a workaround to poST those values back to the server to update the classifier
and store the review in case the user clicks on one of those two buttons.

Furthermore, we imported a CSS file (style.css) at the beginning of the results.
html file. The setup of this file is quite simple; it limits the width of the contents

of this web application to 600 pixels and moves the Incorrect and Correct buttons
labeled with the div ID button down by 20 pixels:

body{
width:600px;

}

.button{
padding-top: 20px;

}

This CSS file is merely a placeholder, so please feel free to adjust it to adjust the look
and feel of the web application to your liking.

The last HTML file we will implement for our web application is the thanks.html
template. As the name suggests, it simply provides a nice thank you message to the user
after providing feedback via the Correct or Incorrect button. Furthermore, we will put
a Submit another review button at the bottom of this page, which will redirect the user
to the starting page. The contents of the thanks . html file are as follows:

<!doctype htmls>
<html>
<head>
<titlesMovie Classification</title>
<link rel="stylesheet"
href="{{ url for('static', filename='style.css') }}">
</head>
<body>

<h3>Thank you for your feedback!</h3>

<div id='button'>
<form action="/">
<input type=submit value='Submit another review'>
</form>

[303]

Embedding a Machine Learning Model into a Web Application

</div>

</body>
</html>

Now, it would be a good idea to start the web application locally from our Terminal
via the following command before we advance to the next subsection and deploy it
on a public web server:

python3 app.py

After we have finished testing our application, we also shouldn't forget to remove
the debug=True argument in the app.run () command of our app . py Script.

Deploying the web application to a public
server

After we have tested the web application locally, we are now ready to deploy our
web application onto a public web server. For this tutorial, we will be using the
PythonAnywhere web hosting service, which specializes in the hosting of Python
web applications and makes it extremely simple and hassle-free. Furthermore,
PythonAnywhere offers a beginner account option that lets us run a single web
application free of charge.

Creating a PythonAnywhere account

To create a new PythonAnywhere account, we visit the website at https: //www.
pythonanywhere.com/ and click on the Pricing & signup link that is located in the
top-right corner. Next, we click on the Create a Beginner account button where we
need to provide a username, password, and valid email address. After we have read
and agreed to the terms and conditions, we should have a hew account.

Unfortunately, the free beginner account doesn't allow us to access the remote server
via the SSH protocol from our Terminal. Thus, we need to use the PythonAnywhere
web interface to manage our web application. But before we can upload our local
application files to the server, we need to create a new web application for our
PythonAnywhere account. After we click on the Dashboard button in the top-right
corner, we have access to the control panel shown at the top of the page. Next,

we click on the Web tab that is now visible at the top of the page. We proceed by
clicking on the +Add a new web app button on the left, which lets us create a new
Python 3.5 Flask web application that we name movieclassifier.

[304]

Chapter 9

Uploading the movie classifier application

After creating a new application for our PythonAnywhere account, we head over to
the Files tab, to upload the files from our local movieclassifier directory using the
PythonAnywhere web interface. After uploading the web application files that we
created locally on our computer, we should have amovieclassifier directory in
our PythonAnywhere account. It contains the same directories and files as our local
movieclassifier directory has, as shown in the following screenshot:

aa@ < i8] 0] = pythonanywhens.com u 4] Y
L
LQT".J I anywhere Send feedback Forums Help Biog Dashboard Account Log out
Consoles Files Web Schedule Databases
/! home [raschkas { & movisclassifier [§] Opsn Bash console hare % full (164 MB af pawr 51200 M quata)
Directories
Mow diroclory
mplil 0
Files
HY M e
i spp.py i)
[reviaws sqita B 3
B voclonzenoy LG

Lastly, we head over to the Web tab one more time and click on the Reload
<username>.pythonanywhere.com button to propagate the changes and refresh our
web application. Finally, our web application should now be up and running and
publicly available via <usernames . pythonanywhere. com.

[305]

Embedding a Machine Learning Model into a Web Application

Troubleshooting
Unfortunately, web servers can be quite sensitive to the tiniest
* problems in our web application. If you are experiencing problems
Wlth_ running the web appllcatlon on PythonAnywhere and are
receiving error messages in your browser, you can check the server
and error logs, which can be accessed from the Web tab in your
PythonAnywhere account, to better diagnose the problem.

Updating the movie classifier

While our predictive model is updated on the fly whenever a user provides
feedback about the classification, the updates to the c1£ object will be reset if the
web server crashes or restarts. If we reload the web application, the c1£ object

will be reinitialized from the classifier.pkl pickle file. One option to apply

the updates permanently would be to pickle the c1f object once again after each
update. However, this would become computationally very inefficient with a
growing number of users, and could corrupt the pickle file if users provide feedback
simultaneously.

An alternative solution is to update the predictive model from the feedback data
that is being collected in the SQLite database. One option would be to download
the SQLite database from the PythonAnywhere server, update the c1f£ object locally
on our computer, and upload the new pickle file to PythonAnywhere. To update
the classifier locally on our computer, we create an update . py script file in the
movieclassifier directory with the following contents:

import pickle
import sqglite3
import numpy as np
import os

import HashingVectorizer from local dir
from vectorizer import vect

def update model (db path, model, batch size=10000) :
conn = sglite3.connect (db path)
c = conn.cursor ()

c.execute ('SELECT * from review db')

results = c.fetchmany(batch size)

[306]

Chapter 9

while results:
data = np.array(results)

X = datal:, 0]
y = datal:, 1].astype(int)
classes = np.array ([0, 11)

X train = vect.transform(X)
model .partial fit (X train, y, classes=classes)
results = c.fetchmany(batch size)

conn.close ()
return model

cur dir = os.path.dirname(_file)

clf = pickle.load(open(os.path.join(cur dir,
'pkl objects',
'classifier.pkl'), 'rb'))

db = os.path.join(cur dir, 'reviews.sglite')

clf = update model (db_path=db, model=clf, batch size=10000)

Uncomment the following lines if you are sure that

+=

you want to update your classifier.pkl file
permanently.

+

+=

pickle.dump (clf, open(os.path.join(cur dir,
'pkl objects', 'classifier.pkl'), 'wb')
, protocol=4)

++

A separate directory containing the movie review classifier application
with the update functionality discussed in this chapter comes with the
+ code examples for this book, which you can either obtain directly from
% Packt or download from GitHub at https://github.com/rasbt/
’ python-machine-learning-book-2nd-edition/. The code in
this section is located in the. . . /code/ch09/movieclassifier
with update subdirectory.

The update model function will fetch entries from the SQLite database in batches
of 10,000 entries at a time, unless the database contains fewer entries. Alternatively,
we could also fetch one entry at a time by using fetchone instead of fetchmany,
which would be computationally very inefficient. However, keep in mind that using
the alternative fetchall method could be a problem if we are working with large
datasets that exceed the computer or server's memory capacity.

[307]

Embedding a Machine Learning Model into a Web Application

Now that we have created the update . py script, we could also upload it to the
movieclassifier directory on PythonAnywhere, and import the update model
function in the main application script app . py to update the classifier from the
SQL.ite database every time we restart the web application. In order to do so, we just
need to add a line of code to import the update model function from the update.py
script at the top of app. py:

import update function from local dir
from update import update model

We then need to call the update model function in the main application body:

if name == ' main ':
clf = update model (db_path=db,
model=clf,
batch size=10000)

As discussed, the modification in the previous code snippet will update the pickle
file on PythonAnywhere. However, in practice, we do not often have to restart our
web application, and it would make sense to validate the user feedback in the SQLite
database prior to the update to make sure the feedback is valuable information for
the classifier.

Summary

In this chapter, you learned about many useful and practical topics that extend our
knowledge of machine learning theory. You learned how to serialize a model after
training and how to load it for later use cases. Furthermore, we created a SQL.ite
database for efficient data storage and created a web application that lets us make
our movie classifier available to the outside world.

Throughout this book, we have really discussed a lot about machine learning
concepts, best practices, and supervised models for classification. In the next chapter,
we will take a look at another subcategory of supervised learning, regression
analysis, which lets us predict outcome variables on a continuous scale, in contrast
to the categorical class labels of the classification models that we have been working
with so far.

[308]

10

Predicting Continuous
Target Variables with
Regression Analysis

Throughout the previous chapters, you learned a lot about the main concepts behind
supervised learning and trained many different models for classification tasks to
predict group memberships or categorical variables. In this chapter, we will dive into
another subcategory of supervised learning: regression analysis.

Regression models are used to predict target variables on a continuous scale,

which makes them attractive for addressing many questions in science as well as
applications in industry, such as understanding relationships between variables,
evaluating trends, or making forecasts. One example would be predicting the sales of
a company in future months.

In this chapter, we will discuss the main concepts of regression models and cover the
following topics:

* Exploring and visualizing datasets

e Looking at different approaches to implement linear regression models

e Training regression models that are robust to outliers

e Evaluating regression models and diagnosing common problems

e Fitting regression models to nonlinear data

[309]

Predicting Continuous Target Variables with Regression Analysis

Introducing linear regression

The goal of linear regression is to model the relationship between one or multiple
features and a continuous target variable. As discussed in Chapter 1, Giving Computers
the Ability to Learn from Data, regression analysis is a subcategory of supervised
machine learning. In contrast to classification —another subcategory of supervised
learning—regression analysis aims to predict outputs on a continuous scale rather
than categorical class labels.

In the following subsections, we will introduce the most basic type of linear
regression, simple linear regression, and relate it to the more general, multivariate
case (linear regression with multiple features).

Simple linear regression

The goal of simple (univariate) linear regression is to model the relationship between
a single feature (explanatory variable x) and a continuous valued response (target
variable y). The equation of a linear model with one explanatory variable is defined
as follows:

y=w, +wx

Here, the weight w, represents the y-axis intercept and w, is the weight coefficient
of the explanatory variable. Our goal is to learn the weights of the linear equation to
describe the relationship between the explanatory variable and the target variable,
which can then be used to predict the responses of new explanatory variables that
were not part of the training dataset.

Based on the linear equation that we defined previously, linear regression can be
understood as finding the best-fitting straight line through the sample points, as
shown in the following figure:

[310]

Chapter 10

h
¥ = wy +owx

)
2 \
T
g vertical offset =)

[¥ =¥l .
- o
g By
-

@
/s
I
(K

‘\ (<. 3)
Wy (Intercepr)

® (explanatory variable)

This best-fitting line is also called the regression line, and the vertical lines from the

regression line to the sample points are the so-called offsets or residuals—the errors
of our prediction.

Multiple linear regression

The special case of linear regression with one explanatory variable that we
introduced in the previous subsection is also called simple linear regression. Of

course, we can also generalize the linear regression model to multiple explanatory
variables; this process is called multiple linear regression:

m
_ _ _ T
y—WOX0+W1x1+...+mem = EWixi =W X
i=0

Here, w, is the y-axis intercept with x, =1.

[311]

Predicting Continuous Target Variables with Regression Analysis

The following figure shows how the two-dimensional, fitted hyperplane of a
multiple linear regression model with two features could look:

Target

Featurne 1

As we can see, visualizing multiple linear regression fits in three-dimensional scatter
plot are already challenging to interpret when looking at static figures. Since we
have no good means of visualizing hyperplanes with two dimensions in a scatterplot
(multiple linear regression models fit to datasets with three or more features), the
examples and visualizations in this chapter will mainly focus on the univariate case,
using simple linear regression. However, simple and multiple linear regression

are based on the same concepts and the same evaluation techniques; the code
implementations that we will discuss in this chapter are also compatible with both
types of regression model.

Exploring the Housing dataset

Before we implement our first linear regression model, we will introduce a new
dataset, the Housing dataset, which contains information about houses in the suburbs
of Boston collected by D. Harrison and D.L. Rubinfeld in 1978. The Housing dataset
has been made freely available and is included in the code bundle of this book. The
dataset has been recently removed from the UCI Machine Learning Repository but

is available online at https://raw.githubusercontent.com/rasbt/python-
machine-learning-book-2nd-edition/master/code/chl0/housing.data.txt.
As with each new dataset, it is always helpful to explore the data through a simple
visualization, to get a better feeling of what we are working with.

[312]

Chapter 10

Loading the Housing dataset into a data frame

In this section, we will load the Housing dataset using the pandas read csv
function, which is fast and versatile—a recommended tool for working with tabular
data stored in a plaintext format.

The features of the 506 samples in the Housing dataset are summarized here, taken
from the original source that was previously shared on https://archive.ics.uci.
edu/ml/datasets/Housing:

e CRrRIM: Per capita crime rate by town

e zN: Proportion of residential land zoned for lots over 25,000 sq. ft.

e 1NDUS: Proportion of non-retail business acres per town

e CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

* nox: Nitric oxide concentration (parts per 10 million)

e rM: Average number of rooms per dwelling

* AGE: Proportion of owner-occupied units built prior to 1940

e p1s: Weighted distances to five Boston employment centers

e RaD: Index of accessibility to radial highways

e Tax: Full-value property tax rate per $10,000

e pTRATIO: Pupil-teacher ratio by town

e B:1000(Bk - 0.63)*2, where Bk is the proportion of [people of African
American descent] by town

* LSTAT: Percentage of lower status of the population
e MEDV: Median value of owner-occupied homes in $1000s

For the rest of this chapter, we will regard the house prices (MEDV) as our
target variable—the variable that we want to predict using one or more of the
13 explanatory variables. Before we explore this dataset further, let us copy it
from the UCI repository into a pandas DataFrame:

>>> import pandas as pd

>>> df = pd.read csv('https://raw.githubusercontent.com/rasbt/"'
'python-machine-learning-book-2nd-edition'
' /master/code/chl0/housing.data.txt’',
header=None,

.. sep="\s+")

>>> df.columns = ['CRIM', 'ZN', 'INDUS', 'CHAS',
'NOX', 'RM', 'AGE', 'DIS', 'RAD',
'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']

>>> df .head()

[313]

Predicting Continuous Target Variables with Regression Analysis

To confirm that the dataset was loaded successfully, we displayed the first five lines
of the dataset, as shown in the following figure:

CRIM ZN INDUS CHAS NOX HRM AGE DIS RAD TAX PTRATIO B LSTAT MEDV
0 0.00532 18.0 21 0 0538 6575 652 4.0000 1 206.0 153 396090 498 24.0
1 D@Ery 0o r.or 0 0468 G421 TAe 48671 2 M20 17.8 38680 814 21.8
2 002728 0.0 T.ar 0 0483 F.1B5 B1.1 49871 2 20 17.8 39283 403 34T
3 002237 00 218 0 0458 6998 458 6.0622 3 2220 187 38463 2984 334
4 0.08005 0.0 2.18 0 D458 7.147 B42 60822 3 2220 18.7 39690 533 3.2

You can find a copy of the Housing dataset (and all other datasets used in
this book) in the code bundle of this book, which you can use if you are
working offline or the web link https://raw.githubusercontent.
com/rasbt/python-machine-learning-book-2nd-edition/
master/code/chl0/housing.data.txt istemporarily unavailable.
For instance, to load the Housing dataset from a local directory, you can
s replace these lines:
df = pd.read csv(
'https://raw.githubusercontent.com/rasbt/"
'python-machine-learning-book-2nd-edition’
' /master/code/chl0/housing.data.txt"',
sep="'\s+")

Replace them in the following code example with this:

df = pd.read csv('./housing.data.txt'), sep='\s+')

Visualizing the important characteristics of a
dataset

Exploratory Data Analysis (EDA) is an important and recommended first step prior
to the training of a machine learning model. In the rest of this section, we will use
some simple yet useful techniques from the graphical EDA toolbox that may help

us to visually detect the presence of outliers, the distribution of the data, and the
relationships between features.

First, we will create a scatterplot matrix that allows us to visualize the pair-wise
correlations between the different features in this dataset in one place. To plot the
scatterplot matrix, we will use the pairplot function from the Seaborn library
(http://stanford.edu/~mwaskom/software/seaborn/), which is a Python library
for drawing statistical plots based on Matplotlib.

[314]

Chapter 10

You can install the seaborn package via conda install seaborn Of pip install
seaborn. After the installation is complete, you can import the package and create
the scatterplot matrix as follows:

>>> import matplotlib.pyplot as plt

>>> import seaborn as sns

>>> cols = ['LSTAT', 'INDUS', 'NOX', 'RM', 'MEDV']
>>> sns.pairplot (df [cols], size=2.5)

>>> plt.tight layout ()

>>> plt.show()

As we can see in the following figure, the scatterplot matrix provides us with a
useful graphical summary of the relationships in a dataset:

o
E ' i?fq:._
4 i : _-1’“%
| = i
g = bt | r- Sy H
= g, . TR ey e
EL™
o i A : J ne 7
scor] weasfiEns, 1 B i P
g o erm AR o 1 za, !" L 1" ‘:ﬂﬂug-:'; ";f:%‘: O
asd wR R " { Tend, "~ * | At e = ik
" 1z e e | . :
e B i . g
= g, | i pbEh, « | T
= WhEy (SCin (Wepn aEm
4 i | R | 1,‘.._.
B T RI= |
> | & wo ’ A
2 st Wby [l |
2 A L A
'] in Fo wn (1 (1] "] [] H uj
INDUS NOX RM MEDV

Predicting Continuous Target Variables with Regression Analysis

Due to space constraints and in the interest of readability, we only plotted five
columns from the dataset: LSTAT, INDUS, NOX, RM, and MEDV. However, you are
encouraged to create a scatterplot matrix of the whole pataFrame to explore the
dataset further by choosing different column names in the previous sns.pairplot
call, or include all variables in the scatterplot matrix by omitting the column selector
(sns.pairplot (df)).

Using this scatterplot matrix, we can now quickly eyeball how the data is distributed
and whether it contains outliers. For example, we can see that there is a linear
relationship between rv and house prices, MEDV (the fifth column of the fourth row).
Furthermore, we can see in the histogram—the lower-right subplot in the scatter
plot matrix—that the MmeDV variable seems to be normally distributed but contains
several outliers.

Note that in contrast to common belief, training a linear regression
model does not require that the explanatory or target variables
»are normally distributed. The normality assumption is only a
% requirement for certain statistics and hypothesis tests that are
beyond the scope of this book (Introduction to Linear Regression
Analysis, Montgomery, Douglas C. Montgomery, Elizabeth A. Peck,
and G. Geoffrey Vining, Wiley, 2012, pages: 318-319).

Looking at relationships using a correlation
matrix

In the previous section, we visualized the data distributions of the Housing

dataset variables in the form of histograms and scatter plots. Next, we will create a
correlation matrix to quantify and summarize linear relationships between variables.
A correlation matrix is closely related to the covariance matrix that we have seen in
the section about Principal Component Analysis (PCA) in Chapter 5, Compressing
Data via Dimensionality Reduction. Intuitively, we can interpret the correlation matrix
as a rescaled version of the covariance matrix. In fact, the correlation matrix is
identical to a covariance matrix computed from standardized features.

The correlation matrix is a square matrix that contains the Pearson product-moment
correlation coefficient (often abbreviated as Pearson's r), which measure the linear
dependence between pairs of features. The correlation coefficients are in the range -1
to 1. Two features have a perfect positive correlation if » =1, no correlation if » =0,
and a perfect negative correlation if » =—1. As mentioned previously, Pearson's
correlation coefficient can simply be calculated as the covariance between two
features x and y (numerator) divided by the product of their standard deviations
(denominator):

[316]

Chapter 10

Sl)0 m)] o

Xy

"= =
S-S -n)

Here, 4 denotes the sample mean of the corresponding feature, o is the covariance
between the features xand y, and o and o, are the features’ standard deviations.

We can show that the covariance between a pair of standardized
features is in fact equal to their linear correlation coefficient. To show
this, let us first standardize the features x and y to obtain their z-scores,
which we will denote as x" and y', respectively:

xr:x_:ux’ ' y_'uy

o, o,

Remember that we compute the (population) covariance between two
features as follows:

.

Since standardization centers a feature variable at mean zero, we can
now calculate the covariance between the scaled features as follows:

! 1 <] 1
o, == (+-0)(»=0)
Through resubstitution, we then get the following result:
l c x_/'lx y_/ly
HZ(O-x j[a}’]
L S0 (i) _
o S)

Finally, we can simplify this equation as follows:

[317]

Predicting Continuous Target Variables with Regression Analysis

In the following code example, we will use NUMPY's corrcoef function on the five
feature columns that we previously visualized in the scatterplot matrix, and we will
use Seaborn's heatmap function to plot the correlation matrix array as a heat map:

>>> import numpy as np

>>> cm = np.corrcoef (df [cols] .values.T)
>>> sns.set (font_scale=1.5)

>>> hm = sns.heatmap (cm,

cbar=True,

annot=True,

square=True,

fmt='.2f",

annot _kws={'size': 15},
yticklabels=cols,

R xticklabels=cols)

>>> plt.show()

As we can see in the resulting figure, the correlation matrix provides us with another
useful summary graphic that can help us to select features based on their respective
linear correlations:

- 0.9
;

-~ 0.B
L)
3
= 0.3
po
o
= - 0,0
= -0.61 -0.39
= -0.3
= -0.74 -0.48 ok
Lt
E]

LSTAT INDLIS NV BM MEDV

[318]

Chapter 10

To fit a linear regression model, we are interested in those features that have a high
correlation with our target variable MEDV. Looking at the previous correlation matrix,
we see that our target variable MEDV shows the largest correlation with the LsTAT
variable (-0.74); however, as you might remember from inspecting the scatterplot
matrix, there is a clear nonlinear relationship between L.sTAT and MEDV. On the other
hand, the correlation between rv and MEDV is also relatively high (0. 70). Given the
linear relationship between these two variables that we observed in the scatterplot,
RM seems to be a good choice for an exploratory variable to introduce the concepts of
a simple linear regression model in the following section.

Implementing an ordinary least squares
linear regression model

At the beginning of this chapter, we mentioned that linear regression can be
understood as obtaining the best-fitting straight line through the sample points

of our training data. However, we have neither defined the term best-fitting nor
have we discussed the different techniques of fitting such a model. In the following
subsections, we will fill in the missing pieces of this puzzle using the Ordinary Least
Squares (OLS) method (sometimes also called linear least squares) to estimate

the parameters of the linear regression line that minimizes the sum of the squared
vertical distances (residuals or errors) to the sample points.

Solving regression for regression parameters
with gradient descent

Consider our implementation of the ADAptive LInear NEuron (Adaline) from
Chapter 2, Training Simple Machine Learning Algorithms for Classification; we remember
that the artificial neuron uses a linear activation function. Also, we defined a cost
function J() , wWhich we minimized to learn the weights via optimization algorithms,
such as Gradient Descent (GD) and Stochastic Gradient Descent (SGD). This cost
function in Adaline is the Sum of Squared Errors (SSE), which is identical to the cost
function that we use for OLS:

[319]

Predicting Continuous Target Variables with Regression Analysis

Here, j is the predicted value y = w’x (note that the term % is just used for

convenience to derive the update rule of GD). Essentially, OLS regression can be
understood as Adaline without the unit step function so that we obtain continuous
target values instead of the class labels -1 and 1. To demonstrate this, let us take
the GD implementation of Adaline from Chapter 2, Training Simple Machine Learning
Algorithms for Classification and remove the unit step function to implement our first

linear regression model:

class LinearRegressionGD (object) :

def

def

def

def

__init_ (self, eta=0.001, n_iter=20):
self.eta = eta
self.n iter = n_iter

fit(self, X, y):
self.w = np.zeros(l + X.shapel[l])
self.cost_ = []

for i in range(self.n iter):
output = self.net input (X)
errors = (y - output)
self.w [1:] += self.eta * X.T.dot (errors)
self.w [0] += self.eta * errors.sum()
cost = (errors**2).sum() / 2.0
self.cost .append(cost)

return self

net input (self, X):
return np.dot (X, self.w [1:]) + self.w_ [0]

predict (self, X):
return self.net_ input (X)

If you need a refresher about how the weights are being updated—taking
a step into the opposite direction of the gradient—please revisit the
Adaptive linear neurons and the convergence of learning section in Chapter 2,
Training Simple Machine Learning Algorithms for Classification.

[320]

Chapter 10

To see our LinearRegressionGD regressor in action, let's use the rm (number of
rooms) variable from the Housing dataset as the explanatory variable and train a
model that can predict MEDV (house prices). Furthermore, we will standardize the
variables for better convergence of the GD algorithm. The code is as follows:

>>> X = df[['RM']] .values

>>> y = df ['MEDV'] .values

>>> from sklearn.preprocessing import StandardScaler
>>> sc_x = StandardScaler ()

>>> sc_y = StandardScaler ()

>>> X std = sc_x.fit transform(X)

>>> y std = sc_y.fit transform(y[:, np.newaxis]).flatten()
>>> lr = LinearRegressionGD ()

>>> lr.fit (X std, y std)

Notice the workaround regarding y_std, using np .newaxisx and £latten. Most
transformers in scikit-learn expect data to be stored in two-dimensional arrays. In the
previous code example, the use of np.newaxisiny[:, np.newaxis] added a new
dimension to the array. Then, after the standardscaler returned the scaled variable,
we converted it back to the original one-dimensional array representation using the
flatten () method for our convenience.

We discussed in Chapter 2, Training Simple Machine Learning Algorithms for
Classification that it is always a good idea to plot the cost as a function of the
number of epochs passes over the training dataset when we are using optimization
algorithms, such as gradient descent, to check the algorithm converged to a cost
minimum (here, a global cost minimum):

>>> sns.reset orig() # resets matplotlib style
>>> plt.plot(range(l, lr.n iter+1l), lr.cost)
>>> plt.ylabel ('SSE"')

>>> plt.xlabel ('Epoch')

>>> plt.show()

[321]

Predicting Continuous Target Variables with Regression Analysis

As we can see in the following plot, the GD algorithm converged after the fifth epoch:

220 1

200 1

E

180 4

160 4

144 o

25 50 15 100 125 150 175 200
Epoch

Next, let's visualize how well the linear regression line fits the training data. To do
so, we will define a simple helper function that will plot a scatterplot of the training
samples and add the regression line:

>>> def lin regplot (X, y, model) :
plt.scatter (X, y, c='steelblue', edgecolor='white', s=70)
plt.plot (X, model.predict (X), color='black',6 lw=2)
return None

Now, we will use this 1in_regplot function to plot the number of rooms against
house price:

>>> lin regplot (X std, y std, 1lr)

>>> plt.xlabel ('Average number of rooms [RM] (standardized)')
>>> plt.ylabel ('Price in $1000s [MEDV] (standardized)')

>>> plt.show()

[322]

Chapter 10

As we can see in the following plot, the linear regression line reflects the general
trend that house prices tend to increase with the number of rooms:

al
L
L
L
-
&
L
-
(4
-
o o
.

wa

-1

Price in 10005 [MEDY] (standardized)
I
<]

-4 =3 =2 =1 o 1 F L}
Average number of reomes [RM) {standardized)

Although this observation makes intuitive sense, the data also tells us that the
number of rooms does not explain the house prices very well in many cases. Later in
this chapter, we will discuss how to quantify the performance of a regression model.
Interestingly, we also observe that several data points lined up at y =3, which
suggests that the prices may have been clipped. In certain applications, it may also be
important to report the predicted outcome variables on their original scale. To scale
the predicted price outcome back onto the price in $1000s axis, we can simply
apply the inverse transform method of the standardScaler:

>>> num_rooms_std = sc_x.transform([5.0])
>>> price std = lr.predict (num rooms std)
>>> print ("Price in $1000s: %.3f" % \

C. sc_y.inverse transform(price std))
Price in $1000s: 10.840

In this code example, we used the previously trained linear regression model to

predict the price of a house with five rooms. According to our model, such a house is
worth $10,840.

On a side note, it is also worth mentioning that we technically don't have to update
the weights of the intercept if we are working with standardized variables since
the y-axis intercept is always 0 in those cases. We can quickly confirm this by
printing the weights:

>>> print ('Slope: %.3f' % lr.w_ [1])
Slope: 0.695

>>> print ('Intercept: %.3f' % lr.w_[0])
Intercept: -0.000

[323]

Predicting Continuous Target Variables with Regression Analysis

Estimating coefficient of a regression model
via scikit-learn

In the previous section, we implemented a working model for regression analysis;
however, in a real-world application we may be interested in more efficient
implementations. For example many of scikit-learn's estimators for regression make
use of the LIBLINEAR library, advanced optimization algorithms, and other code
optimizations that work better with unstandardized variables, which is sometimes
desirable for certain applications:

>>> from sklearn.linear model import LinearRegression
>>> glr = LinearRegression()

>>> slr.fit (X, vy)

>>> print ('Slope: %.3f' % slr.coef [0])

Slope: 9.102

>>> print ('Intercept: %.3f' % slr.intercept)
Intercept: -34.671

As we can see from executing this code, scikit-learn's LinearRegression model,
fitted with the unstandardized rv and MEDV variables, yielded different model
coefficients. Let's compare it to our GD implementation by plotting MEDV against rM:

>>> lin regplot (X, y, slr)

>>> plt.xlabel ('Average number of rooms [RM] (standardized)')
>>> plt.ylabel ('Price in $1000s [MEDV] (standardized)')

>>> plt.show()

Now, when we plot the training data and our fitted model by executing this code, we
can see that the overall result looks identical to our GD implementation:

50 4 | a a8 & & l{'.ll-lil

=]
L=]

Os [MEDWV]
i
=]

,

204

Brice in 510

Average number of roams [AM]

[324]

Chapter 10

As an alternative to using machine learning libraries, there is also
a closed-form solution for solving OLS involving a system of linear
equations that can be found in most introductory statistics textbooks:

w=(X"X)" X"y

We can implement it in Python as follows:

adding a column vector of "ones"
>>> Xb = np.hstack((np.ones ((X.shape[0], 1)), X))
>>> w = np.zeros (X.shape[1l])
>>> z = np.linalg.inv(np.dot (Xb.T, Xb))
>>> w = np.dot(z, np.dot (Xb.T, vy))

¢ >>> print ('Slope: %.3f' % wl[l])

%%‘ Slope: 9.102

>>> print ('Intercept: %$.3f' % w[0])
Intercept: -34.671

The advantage of this method is that it is guaranteed to find the optimal
solution analytically. However, if we are working with very large
datasets, it can be computationally too expensive to invert the matrix in
this formula (sometimes also called the normal equation) or the sample
matrix may be singular (non-invertible), which is why we may prefer
iterative methods in certain cases.

If you are interested in more information on how to obtain normal
equations, | recommend you take a look at Dr. Stephen Pollock's chapter
The Classical Linear Regression Model from his lectures at the University
of Leicester, which is available for free at: http://www.le.ac.uk/
users/dsgpl/COURSES/MESOMET/ECMETXT/O6mesmet . pdf.

Fitting a robust regression model using
RANSAC

Linear regression models can be heavily impacted by the presence of outliers.
In certain situations, a very small subset of our data can have a big effect on the
estimated model coefficients. There are many statistical tests that can be used
to detect outliers, which are beyond the scope of the book. However, removing
outliers always requires our own judgment as data scientists as well as our
domain knowledge.

[325]

Predicting Continuous Target Variables with Regression Analysis

As an alternative to throwing out outliers, we will look at a robust method of
regression using the RANdom SAmple Consensus (RANSAC) algorithm, which fits
a regression model to a subset of the data, the so-called inliers.

We can summarize the iterative RANSAC algorithm as follows:

Select a random number of samples to be inliers and fit the model.

2. Test all other data points against the fitted model and add those points that
fall within a user-given tolerance to the inliers.

3. Refit the model using all inliers.
Estimate the error of the fitted model versus the inliers.

5. Terminate the algorithm if the performance meets a certain user-defined
threshold or if a fixed number of iterations were reached; go back to step 1
otherwise.

Let us now wrap our linear model in the RANSAC algorithm using scikit-learn's
RANSACRegressor Class:

>>> from sklearn.linear model import RANSACRegressor

>>> ransac = RANSACRegressor (LinearRegression(),
max trials=100,
min_samples=50,
loss="'absolute loss',
residual threshold=5.0,
random state=0)

>>> ransac.fit (X, y)

We set the maximum number of iterations of the RaNSACRegressor to 100, and using
min_samples=50, we set the minimum number of the randomly chosen samples to
be at least 50. Using the 'absolute loss' asan argument for the residual metric
parameter, the algorithm computes absolute vertical distances between the fitted line
and the sample points. By setting the residual threshold parameter to 5.0, we
only allowed samples to be included in the inlier set if their vertical distance to the
fitted line is within 5 distance units, which works well on this particular dataset.

By default, scikit-learn uses the MAD estimate to select the inlier threshold, where
MAD stands for the Median Absolute Deviation of the target values y. However,
the choice of an appropriate value for the inlier threshold is problem-specific, which
is one disadvantage of RANSAC. Many different approaches have been developed
in recent years to select a good inlier threshold automatically. You can find a detailed
discussion in: Automatic Estimation of the Inlier Threshold in Robust Multiple Structures
Fitting, R. Toldo, A. Fusiello's, Springer, 2009 (in Image Analysis and Processing—ICIAP
2009, pages: 123-131).

[326]

Chapter 10

After we fit the RANSAC model, let's obtain the inliers and outliers from the fitted
RANSAC-linear regression model and plot them together with the linear fit:

>>> inlier mask = ransac.inlier mask

>>> outlier mask = np.logical not (inlier mask)

>>> line X = np.arange(3, 10, 1)

>>> line y ransac = ransac.predict(line X[:, np.newaxis])

>>> plt.scatter (X[inlier mask], yl[inlier mask],
c='steelblue', edgecolor='white',
marker='o', label='Inliers')

>>> plt.scatter (X[outlier mask], yloutlier mask],
c='limegreen', edgecolor='white',
marker='s', label='Outliers')

>>> plt.plot(line X, line y ransac, color='black',6K lw=2)

>>> plt.xlabel ('Average number of rooms [RM]')

>>> plt.ylabel ('Price in $1000s [MEDV]')

>>> plt.legend(loc="'upper left')

>>> plt.show()

As we can see in the following scatterplot, the linear regression model was fitted on
the detected set of inliers, shown as circles:

sg4 = Inliers & »
s Outliers e

40 4

304

204

10 4

Price in $1000s [MEDV]

3 a 5 6 7 8 9
Average number of rooms [RM]

[327]

Predicting Continuous Target Variables with Regression Analysis

When we print the slope and intercept of the model by executing the following code,
we can see that the linear regression line is slightly different from the fit that we
obtained in the previous section without using RANSAC:

o

>>> print ('Slope: %.3f' % ransac.estimator .coef [0])
Slope: 10.735

>>> print ('Intercept: %.3f' % ransac.estimator .intercept)
Intercept: -44.089

Using RANSAC, we reduced the potential effect of the outliers in this dataset, but
we don't know if this approach has a positive effect on the predictive performance
for unseen data. Thus, in the next section we will look at different approaches

to evaluating a regression model, which is a crucial part of building systems for
predictive modeling.

Evaluating the performance of linear
regression models

In the previous section, we learned how to fit a regression model on training data.
However, you learned in previous chapters that it is crucial to test the model on
data that it hasn't seen during training to obtain a more unbiased estimate of its
performance.

As we remember from Chapter 6, Learning Best Practices for Model Evaluation and
Hyperparameter Tuning, we want to split our dataset into separate training and
test datasets where we use the former to fit the model and the latter to evaluate its
performance to generalize to unseen data. Instead of proceeding with the simple
regression model, we will now use all variables in the dataset and train a multiple
regression model:

>>> from sklearn.model selection import train test split

>>> X = df.iloc[:, :-1].values

>>> y = df ['MEDV'] .values

>>> X train, X test, y train, y test = train test split(
X, y, test_size=0.3, random state=0)

>>> glr = LinearRegression()

>>> slr.fit (X train, y train)

>>> y train pred = slr.predict (X train)

>>> y test pred = slr.predict (X test)

[328]

Chapter 10

Since our model uses multiple explanatory variables, we can't visualize the linear
regression line (or hyperplane to be precise) in a two-dimensional plot, but we

can plot the residuals (the differences or vertical distances between the actual and
predicted values) versus the predicted values to diagnose our regression model.
Residual plots are a commonly used graphical tool for diagnosing regression
models. They can help detect nonlinearity and outliers, and check whether the errors
are randomly distributed.

Using the following code, we will now plot a residual plot where we simply subtract
the true target variables from our predicted responses:

>>> plt.scatter(y train pred, vy train pred - y train,
c="'steelblue', marker='o', edgecolor='white',
label='Training data')

>>> plt.scatter(y test pred, vy test pred - y test,

c='limegreen', marker='s', edgecolor='white',

e label="'Test data')

>>> plt.xlabel ('Predicted values')

>>> plt.ylabel ('Residuals"')

>>> plt.legend(

>>> plt.hlines(y=0, xmin=-10, xmax=50, color='black',6K 1lw=2)

>>> plt.x1lim([-10, 5017)

>>> plt.show()

loc="upper left')

After executing the code, we should see a residual plot with a line passing through
the x-axis origin as shown here:

s Training data

wd - Test data . (I

Residuals

=20 4

-10 0 10 20 30 an 50
Predicted values

[329]

Predicting Continuous Target Variables with Regression Analysis

In case of a perfect prediction, the residuals would be exactly zero, which we will
probably never encounter in realistic and practical applications. However, for a good
regression model, we would expect that the errors are randomly distributed and

the residuals should be randomly scattered around the centerline. If we see patterns
in a residual plot, it means that our model is unable to capture some explanatory
information, which has leaked into the residuals, as we can slightly see in our
previous residual plot. Furthermore, we can also use residual plots to detect outliers,
which are represented by the points with a large deviation from the centerline.

Another useful quantitative measure of a model's performance is the so-called
Mean Squared Error (MSE), which is simply the averaged value of the SSE cost
that we minimized to fit the linear regression model. The MSE is useful to compare
different regression models or for tuning their parameters via grid search and
cross-validation, as it normalizes the SSE by the sample size:

MSE =13 - 5)

noio

Let's compute the MSE of our training and test predictions:

>>> from sklearn.metrics import mean squared error
>>> print ('MSE train: %.3f, test: %$.3f' % (

mean squared error (y train, y train pred),
R mean_squared error (y test, y test pred)))
MSE train: 19.958, test: 27.196

We see that the MSE on the training set is 19.96, and the MSE of the test set is much
larger, with a value of 27.20, which is an indicator that our model is overfitting the
training data.

Sometimes it may be more useful to report the coefficient of determination

(R?), which can be understood as a standardized version of the MSE, for better
interpretability of the model's performance. Or in other words, R* is the fraction of
response variance that is captured by the model. The R? value is defined as:

, . SSE

[330]

Chapter 10

Here, SSE is the sum of squared errors and SST is the total sum of squares:

ssT=3" (3" -,)2

In other words, SST is simply the variance of the response.

Let us quickly show that R’ is indeed just a rescaled version of the MSE:

1__”
; 2
X -m)
- MSE
Var(y)

For the training dataset, the R* is bounded between 0 and 1, but it can become

negative for the test set. If R* =1, the model fits the data perfectly with a
corresponding MSE =0.

Evaluated on the training data, the R* of our model is 0.765, which doesn't sound
too bad. However, the R* on the test dataset is only 0.673, which we can compute by

executing the following code:

>>> from sklearn.metrics import r2 score
>>> print ('R*2 train: %.3f, test: %.3f' %
(r2_score(y train, y train pred),
C. r2 score(y test, y test pred)))
R*2 train: 0.765, test: 0.673

[331]

Predicting Continuous Target Variables with Regression Analysis

Using regularized methods for regression

As we discussed in Chapter 3, A Tour of Machine Learning Classifiers Using
scikit-learn, regularization is one approach to tackle the problem of overfitting by
adding additional information, and thereby shrinking the parameter values of the
model to induce a penalty against complexity. The most popular approaches to
regularized linear regression are the so-called Ridge Regression, Least Absolute
Shrinkage and Selection Operator (LASSO), and Elastic Net.

Ridge regression is an L2 penalized model where we simply add the squared sum of
the weights to our least-squares cost function:

n

T (W) ggge = 2 (5 =3)2 TR

i=1

Here:

L2: A wll3=2>"w/’
=1

By increasing the value of hyperparameter A, we increase the regularization
strength and shrink the weights of our model. Please note that we don't regularize
the intercept term w,.

An alternative approach that can lead to sparse models is LASSO. Depending on the
regularization strength, certain weights can become zero, which also makes LASSO
useful as a supervised feature selection technique:

T(W) isso = 2 (=5)2 0wl

i=1

Here:

LA = 23w
=1

[332]

Chapter 10

However, a limitation of LASSO is that it selects at most n variables if m>n. A
compromise between Ridge regression and LASSO is Elastic Net, which has an L1
penalty to generate sparsity and an L2 penalty to overcome some of the limitations
of LASSO, such as the number of selected variables:

n

J(W)ElasticNer - Z(y(i) N J;(i))2 + Aliwjz + 12i|w/|
j=1 j=1

i=1

Those regularized regression models are all available via scikit-learn, and the
usage is similar to the regular regression model except that we have to specify the
regularization strength via the parameter A, for example, optimized via k-fold
cross-validation.

A Ridge regression model can be initialized via:

>>> from sklearn.linear model import Ridge
>>> ridge = Ridge (alpha=1.0)

Note that the regularization strength is regulated by the parameter alpha, which is
similar to the parameter A. Likewise, we can initialize a LASSO regressor from the
linear model submodule:

>>> from sklearn.linear model import Lasso
>>> lasso = Lasso(alpha=1.0)

Lastly, the ElasticNet implementation allows us to vary the L1 to L2 ratio:

>>> from sklearn.linear model import ElasticNet
>>> elanet = ElasticNet (alpha=1.0, 11 ratio=0.5)

For example, if we setthe 11_ratioto 1.0, the ElasticNet regressor
would be equal to LASSO regression. For more detailed information about the
different implementations of linear regression, please see the documentation at
http://scikit-learn.org/stable/modules/linear model.html.

[333]

Predicting Continuous Target Variables with Regression Analysis

Turning a linear regression model into a
curve — polynomial regression

In the previous sections, we assumed a linear relationship between explanatory and
response variables. One way to account for the violation of linearity assumption is to
use a polynomial regression model by adding polynomial terms:

Y =W, wx+wyx’ ..+ w,x?

Here, d denotes the degree of the polynomial. Although we can use polynomial
regression to model a nonlinear relationship, it is still considered a multiple linear
regression model because of the linear regression coefficients w. In the following
subsections, we will see how we can add such polynomial terms to an existing
dataset conveniently and fit a polynomial regression model.

Adding polynomial terms using scikit-learn

We will now learn how to use the PolynomialFeatures transformer class from
scikit-learn to add a quadratic term (d = 2) to a simple regression problem with one
explanatory variable. Then, we compare the polynomial to the linear fit following
these steps:

1. Add asecond degree polynomial term:

from sklearn.preprocessing import PolynomialFeatures

>>> X = np.array([258.0, 270.0, 294.0, 320.0, 342.0,
368.0, 396.0, 446.0, 480.0, 586.0])\
[:, np.newaxis]

>>> y = np.array ([236.4, 234.4, 252.8, 298.6, 314.2,
342.2, 360.8, 368.0, 391.2, 390.8])

>>> lr = LinearRegression ()

>>> pr = LinearRegression ()

>>> quadratic = PolynomialFeatures (degree=2)

>>> X quad = quadratic.fit transform(X)

2. Fitasimple linear regression model for comparison:
>>> lr.fit (X, y)
>>> X fit = np.arange(250,600,10) [:, np.newaxis]
>>> y lin fit = lr.predict (X_fit)

[334]

Chapter 10

3. Fita multiple regression model on the transformed features for polynomial
regression:

>>> pr.fit (X quad, y)
>>> y quad fit = pr.predict(quadratic.fit transform(X fit))

4. Plot the results:

>>> plt.scatter (X, y, label='training points')
>>> plt.plot(X_fit, y_lin fit,

. label='linear fit', linestyle='--")
>>> plt.plot (X fit, y quad fit,
c. label="'quadratic fit"')
>>> plt.legend(loc="'upper left')
>>> plt.show()

In the resulting plot, we can see that the polynomial fit captures the relationship
between the response and explanatory variable much better than the linear fit:

=== linear fit L
— guadratic fit o E
4004 @ training points L e
I
- e - =
. e S
3501 4 e
P il
o
300 4 P
__"f
.--H
.Jf-/
.r".f
230 = // .
-__
250 300 350 400 450 SO0 550 600

>>> y lin pred = lr.predict (X)

>>> y quad pred = pr.predict (X quad)

>>> print ('Training MSE linear: %.3f, quadratic: %.3f' % (
mean_squared_error(y, y lin pred),

c.. mean squared error(y, y quad pred)))

Training MSE linear: 569.780, quadratic: 61.330

>>> print ('Training R™*2 linear: %.3f, quadratic: %.3f' % (
r2 score(y, y lin pred),

c.. r2_score(y, y quad pred)))

Training R”"2 linear: 0.832, quadratic: 0.982

[335]

Predicting Continuous Target Variables with Regression Analysis

As we can see after executing the code, the MSE decreased from 570 (linear fit) to
61 (quadratic fit); also, the coefficient of determination reflects a closer fit of the
quadratic model (R* = 0.982) as opposed to the linear fit (R* = 0.832) in this
particular toy problem.

Modeling nonlinear relationships in the
Housing dataset

After we learned how to construct polynomial features to fit nonlinear relationships
in a toy problem, let's now take a look at a more concrete example and apply those
concepts to the data in the Housing dataset. By executing the following code, we will
model the relationship between house prices and LsTAT (percent lower status of the
population) as using second degree (quadratic) and third degree (cubic) polynomials
and compare it to a linear fit:

>>> X = df[['LSTAT']] .values
>>> y = df ['MEDV'] .values
>>> regr = LinearRegression()

create quadratic features

>>> quadratic = PolynomialFeatures (degree=2)
>>> cubic = PolynomialFeatures (degree=3)

>>> X quad = quadratic.fit transform(X)

>>> X cubic = cubic.fit transform(X)

fit features
>>> X fit = np.arange(X.min(), X.max(), 1) [:, np.newaxis]

>>> regr = regr.fit (X, vy)
>>> y lin fit = regr.predict (X fit)
>>> linear r2 = r2 score(y, regr.predict (X))

>>> regr = regr.fit (X quad, y)
>>> y quad fit = regr.predict (quadratic.fit transform(X fit))
>>> quadratic_r2 = r2 score(y, regr.predict (X_quad))

>>> regr = regr.fit (X cubic, y)

>>> y cubic_fit = regr.predict(cubic.fit transform(X_fit))
>>> cubic_r2 = r2 score(y, regr.predict (X cubic))

plot results

[336]

Chapter 10

>>> plt.scatter (X, y, label='training points', color='lightgray')

>>> plt.plot (X fit, y lin fit,
label='linear (d=1), $R"2=%.2f$' % linear r2,
color="'blue',
lw=2,
linestyle="':")

>>> plt.plot (X fit, y quad fit,
label='quadratic (d=2), $R"2=%.2f$' % guadratic r2,
color="'red',
1lw=2,
linestyle="'-")

>>> plt.plot (X fit, y cubic fit,
label='cubic (d=3), $R"2=%.2f$' % cubic r2,
color='green',
lw=2,
linestyle='--")

>>> plt.xlabel ('%$ lower status of the population [LSTAT]')
>>> plt.ylabel ('Price in $1000s [MEDV]')

>>> plt.legend(loc="'upper right')

>>> plt.show()

The resulting plot is as follows:

50 ++++ linear (d=1), R? =0.54
— guadratic (d=2), R =0.64
901 3 —= cubic (d=3), R? = 0.66
é training points
=
= 30 4
£
b=
2
wr 20}
=
8
a 10 -,_"‘.h -._“_-‘.‘
0 T
o 5 10 15 20 25 30 35
% lower status of the population [LSTAT]

[337]

Predicting Continuous Target Variables with Regression Analysis

As we can see, the cubic fit captures the relationship between house prices and
LSTAT better than the linear and quadratic fit. However, we should be aware that
adding more and more polynomial features increases the complexity of a model
and therefore increases the chance of overfitting. Thus, in practice it is always
recommended to evaluate the performance of the model on a separate test dataset to
estimate the generalization performance.

In addition, polynomial features are not always the best choice for modeling
nonlinear relationships. For example, with some experience or intuition, just looking
at the MEDV-LSTAT scatterplot may lead to the hypothesis that a log-transformation
of the LSTAT feature variable and the square root of MEDV may project the data
onto a linear feature space suitable for a linear regression fit. For instance, my
perception is that this relationship between the two variables looks quite similar to
an exponential function:

Since the natural logarithm of an exponential function is a straight line, | assume that
such a log-transformation can be usefully applied here:

log(f(x)) =—x

Let's test this hypothesis by executing the following code:

transform features
>>> X log = np.log(X)
>>> y sgrt = np.sqgrt(y)

fit features

>>> X fit = np.arange(X log.min()-1,

.. X log.max()+1, 1) [:, np.newaxis]
>>> regr = regr.fit(X log, y_ sqgrt)

>>> y lin fit = regr.predict (X fit)

>>> linear r2 = r2 score(y sgrt, regr.predict (X log))

plot results
>>> plt.scatter (X log, y sqgrt,
label="'training points',
c.. color="'lightgray"')
>>> plt.plot (X fit, y lin fit,
label='linear (d=1), $R"2=%.2f$' % linear r2,
color="'blue',

[338]

Chapter 10

- lw=2)

>>> plt.xlabel ('log(% lower status of the population [LSTAT])')
>>> plt.ylabel ('$\sqrt{Price \; in \; \$1000s \; [MEDV]}$"')

>>> plt.legend(loc="'lower left')

>>> plt.show()

After transforming the explanatory onto the log space and taking the square root
of the target variables, we were able to capture the relationship between the two
variables with a linear regression line that seems to fit the data better (R* = 0.69)
than any of the polynomial feature transformations previously:

E_
=
=
o
£ 6
&
[=]
i
e
£
g4
&
3_
= linear (d=1), R* = 0.69
21 training points

0 1 2 3 4
log(% lower status of the population [LSTAT])

Dealing with nonlinear relationships
using random forests

In this section, we are going to take a look at random forest regression, which

is conceptually different from the previous regression models in this chapter. A
random forest, which is an ensemble of multiple decision trees, can be understood as
the sum of piecewise linear functions in contrast to the global linear and polynomial
regression models that we discussed previously. In other words, via the decision tree
algorithm, we are subdividing the input space into smaller regions that become more
manageable.

[339]

Predicting Continuous Target Variables with Regression Analysis

Decision tree regression

An advantage of the decision tree algorithm is that it does not require any
transformation of the features if we are dealing with nonlinear data. We remember
from Chapter 3, A Tour of Machine Learning Classifiers Using scikit-learn, that we grow a
decision tree by iteratively splitting its nodes until the leaves are pure or a stopping
criterion is satisfied. When we used decision trees for classification, we defined
entropy as a measure of impurity to determine which feature split maximizes the
Information Gain (IG), which can be defined as follows for a binary split:

N, t]vﬁ t
(o) Moo

p p

IG(D,x,)=1(D,)

Here, x is the feature to perform the split, Np is the number of samples in the parent
node, | is the impurity function, Dp is the subset of training samples at the parent
node,and D,, and D, are the subsets of training samples at the left and right
child node after the split. Remember that our goal is to find the feature split that
maximizes the information gain; or in other words, we want to find the feature split
that reduces the impurities in the child nodes most. In Chapter 3, A Tour of Machine
Learning Classifiers Using scikit-learn we discussed Gini impurity and entropy as
measures of impurity, which are both useful criteria for classification. To use a
decision tree for regression, however, we need an impurity metric that is suitable
for continuous variables, so we define the impurity measure of a node t as the

MSE instead:

1(¢)= MSE(r) :NLZ(y(i) —ﬁ,)z

t ieD,

Here, N, is the number of training samples at node t, D, is the training subset at

node t, y(i) is the true target value, and y, is the predicted target value (sample
mean):

L] i
Vi ::;K;':E:,y()

¢t ieD,

[340]

Chapter 10

In the context of decision tree regression, the MSE is often also referred to as
within-node variance, which is why the splitting criterion is also better known as
variance reduction. To see what the line fit of a decision tree looks like, let us use
the DecisionTreeRegressor implemented in scikit-learn to model the nonlinear
relationship between the MmEDV and LsTAT variables:

>>> from sklearn.tree import DecisionTreeRegressor

>>> X = df[['LSTAT']] .values

>>> y = df ['MEDV'] .values

>>> tree = DecisionTreeRegressor (max depth=3)

>>> tree.fit (X, vy)

>>> sort idx = X.flatten() .argsort()

>>> lin regplot (X[sort idx], yl[sort idx], tree)

>>> plt.xlabel ('% lower status of the population [LSTAT]')
>>> plt.ylabel ('Price in $1000s [MEDV]')

>>> plt.show()

As we can see in the resulting plot, the decision tree captures the general trend in the
data. However, a limitation of this model is that it does not capture the continuity
and differentiability of the desired prediction. In addition, we need to be careful
about choosing an appropriate value for the depth of the tree to not overfit or
underfit the data; here, a depth of three seemed to be a good choice:

50 4 iiiﬁi' LR L

=
=]
i

204

Prica in $1000< [MEDV)
Lt
[]

=
(=]
i

0 5 10 15 20 25 30 35
% lower status of the population [LSTAT]

In the next section, we will take a look at a more robust way of fitting regression
trees: random forests.

[341]

Predicting Continuous Target Variables with Regression Analysis

Random forest regression

As we learned in Chapter 3, A Tour of Machine Learning Classifiers Using scikit-learn, the
random forest algorithm is an ensemble technique that combines multiple decision
trees. A random forest usually has a better generalization performance than an
individual decision tree due to randomness, which helps to decrease the model's
variance. Other advantages of random forests are that they are less sensitive to
outliers in the dataset and don't require much parameter tuning. The only parameter
in random forests that we typically need to experiment with is the number of trees in
the ensemble. The basic random forest algorithm for regression is almost identical to
the random forest algorithm for classification that we discussed in Chapter 3, A Tour
of Machine Learning Classifiers Using scikit-learn, the only difference is that we use the
MSE criterion to grow the individual decision trees, and the predicted target variable
is calculated as the average prediction over all decision trees.

Now, let's use all features in the Housing dataset to fit a random forest regression
model on 60 percent of the samples and evaluate its performance on the remaining
40 percent. The code is as follows:

df.iloc[:, :-1].values
df ['MEDV'] .values
>>> X train, X test, y train, y test =\

>>> X

>>> y

train test_split (X, vy,
test size=0.4,
random state=1)

>>> from sklearn.ensemble import RandomForestRegressor
>>> forest = RandomForestRegressor(n_estimators:lOOO,
criterion='mse',
random_ state=1,
n_jobs=-1)
>>> forest.fit (X train, y train)
>>> y train pred = forest.predict (X train)
>>> y test pred = forest.predict (X test)
>>> print ('MSE train: %.3f, test: %$.3f' % (
mean squared error (y train, y train pred),
R mean_ squared error (y test, y test pred)))
MSE train: 1.642, test: 11.052
>>> print ('R*2 train: %.3f, test: %.3f' % (
r2 score(y train, y train pred),
r2_ score(y test, y test pred)))
2 train: 0.979, test: 0.878

[342]

Chapter 10

Unfortunately, we see that the random forest tends to overfit the training data.
However, it's still able to explain the relationship between the target and explanatory

variables relatively well (R” = 0.871 on the test dataset).

Lastly, let us also take a look at the residuals of the prediction:

>>> plt.scatter(y train pred,
y train pred - y train,
c="'steelblue',
edgecolor="'white',
marker='o"',
s=35,
alpha=0.9,
c.. label='Training data')
>>> plt.scatter(y test pred,
y _test pred - y test,
c="'limegreen',
edgecolor="'white',
marker='s',
s=35,
alpha=0.9,
c. label='Test data')
>>> plt.xlabel ('Predicted values')
>>> plt.ylabel ('Residuals"')
>>> plt.legend(loc="upper left')
>>> plt.hlines(y=0, xmin=-10, xmax=50, lw=2, color='black')
>>> plt.x1lim([-10, 501)
>>> plt.show()

As it was already summarized by the R? coefficient, we can see that the model fits
the training data better than the test data, as indicated by the outliers in the y-axis
direction. Also, the distribution of the residuals does not seem to be completely
random around the zero center point, indicating that the model is not able to
capture all the exploratory information.

[343]

Predicting Continuous Target Variables with Regression Analysis

However, the residual plot indicates a large improvement over the residual plot of
the linear model that we plotted earlier in this chapter:

204
& traiing data -

s fest data
15 4

104 =

Residuals

-10 0 10 20 30 40 50
Prizdicted values

Ideally, our model error should be random or unpredictable. In other words, the
error of the predictions should not be related to any of the information contained

in the explanatory variables, but should reflect the randomness of the real-world
distributions or patterns. If we observe patterns in the prediction errors, for example,
by inspecting the residual plot, it means that the residual plots contain predictive
information. A common reason for this could be that explanatory information is
leaking into those residuals.

Unfortunately, there is now a universal approach for dealing with non-randomness
in residual plots, and it requires experimentation. Depending on the data that is
available to us, we may be able to improve the model by transforming variables,
tuning the hyperparameters of the learning algorithm, choosing simpler or more
complex models, removing outliers, or including additional variables.

In Chapter 3, A Tour of Machine Learning Classifiers Using scikit-learn, we
also learned about the kernel trick, which can be used in combination
with a Support Vector Machine (SVM) for classification, and is useful if
we are dealing with nonlinear problems. Although a discussion is beyond
; the scope of this book, SVMs can also be used in nonlinear regression
tasks. T_he i_nterested reader can find more informatiop about SVMS: for
regression in an excellent report: Support Vector Machines for Classification
and Regression, S. R. Gunn and others, ISIS technical report, 14, 1998. An
SVM regressor is also implemented in scikit-learn, and more information
about its usage can be found at http://scikit-learn.org/stable/
modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR.

[344]

Chapter 10

Summary

At the beginning of this chapter, you learned about simple linear regression analysis
to model the relationship between a single explanatory variable and a continuous
response variable. We then discussed a useful explanatory data analysis technique to
look at patterns and anomalies in data, which is an important first step in predictive
modeling tasks.

We built our first model by implementing linear regression using a gradient-based
optimization approach. We then saw how to utilize scikit-learn's linear models

for regression and also implement a robust regression technique (RANSAC) as

an approach for dealing with outliers. To assess the predictive performance of
regression models, we computed the mean sum of squared errors and the related

R* metric. Furthermore, we also discussed a useful graphical approach to diagnose
problems of regression models: the residual plot.

After we discussed how regularization can be applied to regression models to reduce
the model complexity and avoid overfitting, we also introduced several approaches
to model nonlinear relationships including polynomial feature transformation and
random forest regressors.

We have discussed supervised learning, classification, and regression analysis in
great detail throughout the previous chapters. In the next chapter, we are going to
learn about another interesting subfield of machine learning, unsupervised learning
and also we will learn how to use cluster analysis for finding hidden structures in
data in the absence of target variables.

[345]

11

Working with Unlabeled
Data — Clustering Analysis

In the previous chapters, we used supervised learning techniques to build machine
learning models using data where the answer was already known—the class labels
were already available in our training data. In this chapter, we will switch gears and
explore cluster analysis, a category of unsupervised learning techniques that allows
us to discover hidden structures in data where we do not know the right answer
upfront. The goal of clustering is to find a natural grouping in data so that items in
the same cluster are more similar to each other than to those from different clusters.

Given its exploratory nature, clustering is an exciting topic and, in this chapter, we
will learn about the following concepts, which can help us to organize data into
meaningful structures:

* Finding centers of similarity using the popular k-means algorithm

e Taking a bottom-up approach to building hierarchical clustering trees

* |dentifying arbitrary shapes of objects using a density-based clustering
approach

[347]

Working with Unlabeled Data — Clustering Analysis

Grouping objects by similarity using
k-means

In this section, we will learn about one of the most popular clustering algorithms,
k-means, which is widely used in academia as well as in industry. Clustering (or
cluster analysis) is a technique that allows us to find groups of similar objects, objects
that are more related to each other than to objects in other groups. Examples of
business-oriented applications of clustering include the grouping of documents, music,
and movies by different topics, or finding customers that share similar interests based
on common purchase behaviors as a basis for recommendation engines.

K-means clustering using scikit-learn

As we will see